在極坐標系中,圓ρ=2cosθ的半徑為( 。
A、
1
2
B、1
C、2
D、4
考點:簡單曲線的極坐標方程
專題:坐標系和參數(shù)方程
分析:直接化圓的極坐標方程為直角坐標方程,然后化為標準方程求得圓的半徑.
解答: 解:由ρ=2cosθ,得ρ2=2ρcosθ,
化為直角坐標方程得x2+y2=2x,即(x-1)2+y2=1.
∴圓ρ=2cosθ的半徑為1.
故選:B.
點評:本題考查了簡單曲線的極坐標方程,考查了圓的一般方程與標準方程的互化,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

從一批草莓中,隨機抽取n個,其重量(單位:克)的頻率分布表如下:
分組(重量)[80,85)[85,90)[90,95)[95,100)
頻數(shù)(個)1050x15
已知從n個草莓中隨機抽取一個,抽到重量在[90,95)的草莓的概率為
4
19
.(1)求出n,x的值;(2)用分層抽樣的方法從重量在[80,85)和[95,100)的草莓中共抽取5個,再從這5個草莓中任取2個,求重量在[80,85)和[95,100)中各有1個的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
x2-4x+3,x≤0
-x2-2x+3,x>0
,不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,則實數(shù)a的取值范圍是( 。
A、(-∞,-2)
B、(-∞,0)
C、(0,2)
D、(-2,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,ABCD是正方形,DE⊥平面ABCD.
(1)求證:AC⊥平面BDE;
(2)若AF∥DE,DE=3AF,點M在線段BD上,且BM=
1
3
BD,求證:AM∥平面 BEF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
,
b
是夾角為60°的單位向量,則向量
a
與向量
a
+
b
的夾角是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C1的參數(shù)方程是
x=2cosθ
y=2+2sinθ
(θ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程是ρ=-4cosθ.
(1)求曲線C1與C2交點的極坐標;
(2)A、B兩點分別在曲線C1與C2上,當|AB|最大時,求△OAB的面積(O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a1=2,an+1=2an,寫出前5項,并猜想an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在坐標平面內(nèi)橫縱坐標均為整數(shù)的點稱為格點.現(xiàn)有一只螞蟻從坐標平面的原點出發(fā),按如下線路沿順時針方向爬過格點:O→A1(1,0)→A2(1,-1)→A3(0,-1)→A4(-1,-1)→A5(-1,0)→A6(-1,1))→A7(0,1)→A8(1,1)→A9(2,1)→…→A12(2,-2)→…→A16(-2,-2)→…→A20(3,2)→…,則螞蟻在爬行過程中經(jīng)過的第350個格點A350坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=ax2+(2b+1)x-a-2(a,b∈R).
(1)若a=0,當x∈[
1
2
,1]時恒有f(x)≥0,求b的取值范圍;
(2)若a≠0且b=-1,試在直角坐標平面內(nèi)找出橫坐標不同的兩個點,使得函數(shù)y=f(x)的圖象永遠不經(jīng)過這兩點;
(3)當a2+b2=1時,函數(shù)y=f(x)存在零點x0,求x0的取值范圍.

查看答案和解析>>

同步練習冊答案