分析 先根據(jù)導(dǎo)數(shù)的幾何意義求出切點(diǎn)坐標(biāo),欲求P到直線y=x-2的距離的最小值即求切點(diǎn)到直線的距離,最后利用點(diǎn)到直線的距離公式進(jìn)行求解即可
解答 解:函數(shù)的定義域?yàn)椋?,+∞),
由$y'=2x-\frac{1}{x}=1$可得x=1,
所以切點(diǎn)為(1,1),
它到直線x-y-2=0的距離d=$\frac{|1-1-2|}{\sqrt{2}}$=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$.
即點(diǎn)P到直線l:y=x-2的距離的最小值為$\sqrt{2}$,
故答案為:$\sqrt{2}$.
點(diǎn)評 本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程,以及點(diǎn)到直線的距離公式,屬于中檔題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{15}{2}$ | B. | $\frac{\sqrt{15}}{2}$ | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$ | B. | $\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$ | C. | $\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow$ | D. | $\frac{2}{3}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,4,8,10} | B. | {1,6} | C. | {1,4,6,8,10} | D. | {2,6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com