【題目】已知圓的半徑為,圓心在直線y=2x,圓被直線x-y=0截得的弦長為4,求圓的方程.

【答案】

【解析】試題分析:設(shè)圓的方程是 ,根據(jù)圓心在直線 上,所以 .①聯(lián)立方程組, ,由弦長公式得 ,化簡得 .②

解①②組成的方程組,求出,即可求出圓的方程.

試題解析:設(shè)圓的方程是(x-a)2+(y-b)2=10,因為圓心在直線y=2x上,所以b=2a.①

解方程組得2x2-2(a+b)x+a2+b2-10=0,

所以x1+x2=a+b,x1·x2=,由弦長公式得·=4,化簡得(a-b)2=4.②

解①②組成的方程組,得a=2,b=4,或a=-2,b=-4,

故所求圓的方程是(x-2)2+(y-4)2=10,或(x+2)2+(y+4)2=10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人對東北一種松樹的生長進(jìn)行了研究,收集了其高度h()與生長時間t()的相關(guān)數(shù)據(jù),選擇hmtbh=loga(t+1)來刻畫ht的關(guān)系,你認(rèn)為哪個符合?并預(yù)測第8年的松樹高度.

t()

1

2

3

4

5

6

h()

0.6

1

1.3

1.5

1.6

1.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一建筑物的三視圖(單位: ),現(xiàn)需將其外壁用油漆粉刷一遍,已知每平方米用漆,問需要油漆多少千克?(無需求近似值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對任意存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界,已知函數(shù).

(1)當(dāng)時,求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請說明理由;

(2)若函數(shù)上是以4為上界的有界函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).它與曲線交于兩點.

(1)求的長;

(2)在以為極點, 軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點的極坐標(biāo)為,求點到線段中點的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益與投入(單位:萬元)滿足,乙城市收益與投入(單位:萬元)滿足,設(shè)甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元)。

(1)當(dāng)甲城市投資50萬元時,求此時公司總收益;

(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中, 的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點, 軸正半軸為極軸的極坐標(biāo)系中, 的極坐標(biāo)方程.

)說明是哪種曲線,并將的方程化為普通方程;

有兩個公共點,頂點的極坐標(biāo),求線段的長及定點兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=5x+x-2,g(x)=log5x+x-2的零點分別為x1,x2,則x1+x2的值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機擲兩枚質(zhì)地均勻的骰子,它們向上的點數(shù)之和不超過5的概率記為p1,點數(shù)之和大于5的概率記為p2,點數(shù)之和為偶數(shù)的概率記為p3,則

 (  )

A. p1<p2<p3 B. p2<p1<p3 C. p1<p3<p2 D. p3<p1<p2

查看答案和解析>>

同步練習(xí)冊答案