【題目】在平面直角坐標系中,已知橢圓的離心率為,且過點

1)求橢圓的方程;

2)設(shè)點,點軸上,過點的直線交橢圓交于,兩點.

①若直線的斜率為,且,求點的坐標;

②設(shè)直線,的斜率分別為,,是否存在定點,使得恒成立?若存在,求出點坐標;若不存在,請說明理由.

【答案】1 2)① ②存在,;

【解析】

1)根據(jù)橢圓離心率及過點,建立方程組,求解即可(2)①設(shè)直線的方程為:,聯(lián)立橢圓方程,利用弦長公式即可求出m,得到點的坐標②直線分斜率為0與不為0兩種情況討論,斜率為0時易得存在,斜率不為0時,聯(lián)立直線與橢圓方程,利用恒成立,可化簡知存在定點.

1)∵橢圓的離心率為,且過點

,,

∴橢圓的方程為:

2)設(shè),

①設(shè)直線的方程為:

,

,解得.

②當直線的斜率為0時,,.

可得,解得,即.

當直線的斜率不為0時,設(shè)直線的方程為

.

可得,

,

.

.

,

∴當時,上式恒成立,

存在定點,使得恒成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年9月,臺風“山竹”在我國多個省市登陸,造成直接經(jīng)濟損失達52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風中造成的直接經(jīng)濟損失,將收集的數(shù)據(jù)分成五組:,,,(單位:元),得到如圖所示的頻率分布直方圖.

(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

(2)臺風后該青年志愿者與當?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機抽取2戶進行重點幫扶,設(shè)抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個人員密集流動地段增設(shè)一個起點站,為了研究車輛發(fā)車間隔時間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):

間隔時間(分鐘)

10

11

12

13

14

15

等候人數(shù)(人)

23

25

26

29

28

31

調(diào)查小組先從這6組數(shù)據(jù)中選取4組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應(yīng)的等候人數(shù),再求與實際等候人數(shù)的差,若差值的絕對值不超過1,則稱所求方程是恰當回歸方程”.

1)若選取的是后面4組數(shù)據(jù),求關(guān)于的線性回歸方程;

2)判斷(1)中的方程是否是恰當回歸方程;

3)為了使等候的乘客不超過35人,試用(1)中方程估計間隔時間最多可以設(shè)置為多少(精確到整數(shù))分鐘?

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年“十一”期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調(diào)查,將他們在某段高速公路的車速()分成六段: , , , , , ,后得到如圖的頻率分布直方圖.

(1)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計值;

(2)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角梯形中,,,的中點,如圖沿折到的位置,使,點上,且,如圖2

求證:平面;

求二面角的正切值;

在線段上是否存在點,使平面?若存在,確定的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是邊長為1的正方形,PA⊥底面ABCDPA1,點M是棱PC上的一點,且AMPB

1)求三棱錐CPBD的體積;

2)證明:AM⊥平面PBD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列選項正確的為(

A.已知直線,,則的充分不必要條件是

B.命題若數(shù)列為等比數(shù)列,則數(shù)列為等比數(shù)列是假命題

C.棱長為正方體中,平面與平面距離為

D.已知為拋物線上任意一點且,若恒成立,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的離心率為,且過點

求橢圓的標準方程;

設(shè)直線l經(jīng)過點且與橢圓C交于不同的兩點M,N試問:在x軸上是否存在點Q,使得直線QM與直線QN的斜率的和為定值?若存在,求出點Q的坐標及定值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右頂點分別為AB,點P在橢圓O上運動,若PAB面積的最大值為,橢圓O的離心率為

(1)求橢圓O的標準方程;

(2)B點作圓E的兩條切線,分別與橢圓O交于兩點CD(異于點B),當r變化時,直線CD是否恒過某定點?若是,求出該定點坐標,若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案