正方體ABCD-A1B1C1D1中,直線DB1與平面ABCD所成角的正弦值為
 
考點(diǎn):直線與平面所成的角
專題:計(jì)算題,空間角
分析:連接BD,則在正方體ABCD-A1B1C1D1中,BB1⊥面ABCD,可得∠D1BD是直線DB1與平面ABCD所成角,即可求出直線DB1與平面ABCD所成角的正弦值.
解答: 解:連接BD,則
∵在正方體ABCD-A1B1C1D1中,BB1⊥面ABCD,
∴∠D1BD是直線DB1與平面ABCD所成角
設(shè)棱長為1,則DB1=
3
,
∴直線DB1與平面ABCD所成角的正弦值為
3
3

故答案為:
3
3
點(diǎn)評:本題考查直線和平面所成的角.解決本題的關(guān)鍵在于找出直線DB1與平面ABCD所成角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的焦點(diǎn)在x軸上,一個(gè)頂點(diǎn)為A(0,-1),其右焦點(diǎn)到直線x-y+2
2
=0
的距離為3,則橢圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=
1
2x+1
(1<x<3)
的值域?yàn)?div id="ybob67d" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,cos(A+
π
4
)=
3
5
,則cos2A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系內(nèi),到點(diǎn)(1,0)和直線x=-1距離相等的點(diǎn)的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從8名男同學(xué),2名女同學(xué)中選3名同學(xué)開會(huì),至少有1名女同學(xué)的選法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

長方體三個(gè)面的面對角線的長度分別為3,3,
14
那么它的外接球的表面積為(  )
A、8πB、16π
C、32πD、64π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)五位自然
.
a1a2a3a4a5
,ai∈{0,1,2,3,4,5},i=1,2,3,4,5,當(dāng)且僅當(dāng)a1>a2>a3,a3<a4<a5時(shí)稱為“凹數(shù)”(如32014,53134等),則滿足條件的五位自然數(shù)中“凹數(shù)”的個(gè)數(shù)為( 。
A、110B、137
C、145D、146

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)無窮數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn(n∈N*),且點(diǎn)(Sn-1,Sn)(n∈N*,n≥2)在直線(2t+3)x-3ty+3t=0上(t為與n無關(guān)的正實(shí)數(shù)).
(1)求證:數(shù)列{an}(n∈N*)為等比數(shù)列;
(2)記數(shù)列{an}的公比為f(t),數(shù)列{bn}滿足b1=1,bn=f(
1
bn-1
)(n∈N*,n≥2),
設(shè)cn=b2n-1b2n-b2nb2n+1,求數(shù)列{cn}的前n項(xiàng)和Tn;
(3)(理)若(1)中無窮等比數(shù)列{an}(n∈N*)的各項(xiàng)和存在,記S(t)=a1+a2+…+an+…,求函數(shù)S(t)的值域.

查看答案和解析>>

同步練習(xí)冊答案