【題目】算盤是中國傳統(tǒng)的計算工具,其形長方,周為木框,內(nèi)貫直柱,俗稱,檔中橫以梁,梁上兩珠,每珠作數(shù)五,梁下五珠,每珠作數(shù)一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位檔撥上一顆上珠和一顆下珠,個位檔撥上一顆上珠,則表示數(shù)字65.若在個、十、百、千位檔中隨機選擇一檔撥一顆上珠,再隨機選擇兩個檔位各撥一顆下珠,則所撥數(shù)字大于200的概率為( ).

A.B.C.D.

【答案】D

【解析】

根據(jù)題意得到總的可能的情況,再分上珠撥的是千位檔或百位檔和上珠撥的是個位檔或十位檔進行分類,得到符合要求的情況,從而得到符合要求的概率.

依題意得所撥數(shù)字共有種可能.

要使所撥數(shù)字大于200,則

若上珠撥的是千位檔或百位檔,則所撥數(shù)字一定大于200,

種;

若上珠撥的是個位檔或十位檔,則下珠一定要撥千位,再從個、十、百里選一個下珠,

種,

則所撥數(shù)字大于200的概率為,故選D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面是正方形,頂點在底面的射影是底面的中心,且各頂點都在同一球面上,若該四棱錐的側(cè)棱長為,體積為4,且四棱錐的高為整數(shù),則此球的半徑等于( )(參考公式:

A. 2B. C. 4D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,,四邊形和四邊形是兩個全等的等腰梯形.

(1)求證:四邊形為矩形;

(2)若平面平面,,,,求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新型冠狀病毒屬于屬的冠狀病毒,人群普遍易感,病毒感染者一般有發(fā)熱咳嗽等臨床表現(xiàn),現(xiàn)階段也出現(xiàn)無癥狀感染者.基于目前的流行病學調(diào)查和研究結(jié)果,病毒潛伏期一般為1-14天,大多數(shù)為3-7.為及時有效遏制病毒擴散和蔓延,減少新型冠狀病毒感染對公眾健康造成的危害,需要對與確診新冠肺炎病人接觸過的人員進行檢查.某地區(qū)對與確診患者有接觸史的1000名人員進行檢查,檢查結(jié)果統(tǒng)計如下:

發(fā)熱且咳嗽

發(fā)熱不咳嗽

咳嗽不發(fā)熱

不發(fā)熱也不咳嗽

確診患病

200

150

80

30

確診未患病

150

150

120

120

1)能否在犯錯率不超過0.001的情況下,認為新冠肺炎密切接觸者有發(fā)熱癥狀與最終確診患病有關.

臨界值表:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.645

7.879

10.828

2)在全國人民的共同努力下,尤其是全體醫(yī)護人員的辛勤付出下,我國的疫情得到較好控制,現(xiàn)階段防控重難點主要在境外輸入病例和無癥狀感染者(即無相關臨床表現(xiàn)但核酸檢測或血清特異性免疫球蛋白M抗體檢測陽者).根據(jù)防控要求,無癥狀感染者雖然還沒有最終確診患2019新冠肺炎,但與其密切接觸者仍然應當采取居家隔離醫(yī)學觀察14天,已知某人曾與無癥狀感染者密切接觸,而且在家已經(jīng)居家隔離10天未有臨床癥狀,若該人員居家隔離第天出現(xiàn)臨床癥狀的概率為,兩天之間是否出現(xiàn)臨床癥狀互不影響,而且一旦出現(xiàn)臨床癥狀立刻送往醫(yī)院核酸檢查并采取必要治療,若14天內(nèi)未出現(xiàn)臨床癥狀則可以解除居家隔離,求該人員在家隔離的天數(shù)(含有臨床癥狀表現(xiàn)的當天)的分布列以及數(shù)學期望值.(保留小數(shù)點后兩位)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】BMI指數(shù)(身體質(zhì)量指數(shù),英文為BodyMassIndex,簡稱BMI)是衡量人體胖瘦程度的一個標準,BMI=體重(kg/身高(m)的平方.根據(jù)中國肥胖問題工作組標準,當BMI28時為肥胖.某地區(qū)隨機調(diào)查了120035歲以上成人的身體健康狀況,其中有200名高血壓患者,被調(diào)查者的頻率分布直方圖如下:

1)求被調(diào)查者中肥胖人群的BMI平均值;

2)填寫下面列聯(lián)表,并判斷是否有99.9%的把握認為35歲以上成人患高血壓與肥胖有關.

0.050

0.010

0.001

k

3.841

6.635

10.828

肥胖

不肥胖

合計

高血壓

非高血壓

合計

附:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】羽毛球比賽中,首局比賽由裁判員采用拋球的方法決定誰先發(fā)球,在每回合爭奪中,贏方得1分且獲得發(fā)球權.每一局中,獲勝規(guī)則如下:①率先得到21分的一方贏得該局比賽;②如果雙方得分出現(xiàn),需要領先對方2分才算該局獲勝;③如果雙方得分出現(xiàn),先取得30分的一方該局獲勝.現(xiàn)甲、乙兩名運動員進行對抗賽,在每回合爭奪中,若甲發(fā)球時,甲得分的概率為;乙發(fā)球時,甲得分的概率為

(Ⅰ)若,記甲以贏一局的概率為,試比較的大。

(Ⅱ)根據(jù)對以往甲、乙兩名運動員的比賽進行數(shù)據(jù)分析,得到如下列聯(lián)表部分數(shù)據(jù).若不考慮其它因素對比賽的影響,并以表中兩人發(fā)球時甲得分的頻率作為,的值.

甲得分

乙得分

總計

甲發(fā)球

50

100

乙發(fā)球

60

90

總計

190

①完成列聯(lián)表,并判斷是否有95%的把握認為比賽得分與接、發(fā)球有關?

②已知在某局比中,雙方戰(zhàn)成,且輪到乙發(fā)球,記雙方再戰(zhàn)回合此局比賽結(jié)束,求的分布列與期望.

參考公式:,其中

臨界值表供參考:

0.15

0.10

0.05

0.010

0.001

2.072

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線E的參數(shù)方程為為參數(shù)),以O為極點,x軸非負半軸為極軸建立極坐標系,直線,的極坐標方程分別為,,交曲線E于點A,B,交曲線E于點C,D.

1)求曲線E的普通方程及極坐標方程;

2)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以原點為圓心,橢圓的長半軸為半徑的圓與直線相切.

1)求橢圓的標準方程;

2)已知點為動直線與橢圓的兩個交點,問:在軸上是否存在點,使為定值?若存在,試求出點的坐標和定值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺中,,GH分別為,上的點,平面平面,.

1)證明:平面平面;

2)若,,求二面角的大小.

查看答案和解析>>

同步練習冊答案