8.到坐標(biāo)原點(diǎn)的距離為1的點(diǎn)的軌跡方程.

分析 設(shè)動(dòng)點(diǎn)的坐標(biāo)為(x,y),結(jié)合到坐標(biāo)原點(diǎn)的距離為1,即可求得軌跡方程.

解答 解:設(shè)M的坐標(biāo)是(x,y).
因?yàn)镸到原點(diǎn)的距離等于1,所以$\sqrt{{x}^{2}+{y}^{2}}$=1,
化簡得,x2+y2=1,
所以M的軌跡方程是x2+y2=1.

點(diǎn)評 本題考查了動(dòng)點(diǎn)的軌跡方程求法:直接法,以及兩點(diǎn)間的距離公式,難度不大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=lg(10x+a)是定義域?yàn)镽上的奇函數(shù),h(x)=tf(x).
(1)求實(shí)數(shù)a的值;
(2)若h(x)≤xlog3x在x∈[3,8]上恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知p:$\left\{\begin{array}{l}{lg|x|≤1}\\{{2}^{x+2}≥1}\end{array}\right.$,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要不充分條件,求實(shí)數(shù)m的取值范圍( 。
A.(-∞,9]B.[9,+∞)C.(-∞,3]D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,若關(guān)于x的方程[f(x)]3-a|f(x)|+2=0有兩個(gè)不等實(shí)根,則實(shí)數(shù)a的取值范圍是( 。
A.(0,1)B.(1,3)C.(-1,3)D.(3,∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=x2-2x-1,x∈[-1,0],則函數(shù)f(x)的值域?yàn)閇-1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)上存在一點(diǎn)M,使得∠F1MF2=90°(F1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn)),求橢圓的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,四棱錐P-ABCD的底面四邊形ABCD是梯形,AB∥CD,M是PC的中點(diǎn),AM與平面PBD交于點(diǎn)E,且AE=EM.
(1)證明:CD=2AB;
(2)若PB=BC且平面PBC⊥平面PDC,證明:PA=AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知x+x-1=5,求$\frac{x-{x}^{-1}}{{x}^{\frac{1}{2}}-{x}^{\frac{-1}{2}}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知22x≤($\frac{1}{4}$)x-2
(1)求x的范圍;
(2)求函數(shù)y=($\frac{1}{4}$)x-1-4($\frac{1}{2}$)x-2的值域.

查看答案和解析>>

同步練習(xí)冊答案