根據(jù)下列幾何體的三視圖,則它的體積V=
 

考點:由三視圖求面積、體積
專題:計算題,空間位置關系與距離
分析:三視圖中長對正,高對齊,寬相等.直觀圖為由圓錐與圓柱組合體,利用體積公式,可得體積.
解答: 解:直觀圖為由圓錐與圓柱組合體,其中圓錐底面r=2,高h=2,母線長l=2
2
,圓柱的高為2.
則V=π•22•2+
1
3
•π•22•2
=
32π
3

故答案為:
32π
3
點評:考查了學生的空間想象力,及三視圖中長對正,高對齊,寬相等的知識,確定直觀圖是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
ax2+2
x+b
是奇函數(shù),且f(1)=3.
(1)求實數(shù)a,b的值.
(2)用定義法證明f(x)在(0,
2
]
上是減函數(shù);
(3)求f(x)在(0,+∞)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列給出的賦值語句中正確的是( 。
A、4=MB、M=-M
C、B=A-3D、x+y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程x2-px+6=0的解集為M,方程x2+6x-q=0的解集為N,且M∩N={2},那么p+q=( 。
A、21B、8C、6D、7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

[x]表示不超過x的最大整數(shù),函數(shù)f(x)=|x|-[x]
①f(x)的定義域為R;
②f(x)的值域為(0,1];
③f(x)是偶函數(shù);
④f(x)不是周期函數(shù);
⑤f(x)的單調增區(qū)間為(k,k+1)(k∈N).
上面的結論正確的個數(shù)是(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知AD是△ABC的角平分線,且AC=2,AB=3,A=60°,則AD長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將二項式系數(shù)表中的奇數(shù)換成1,偶數(shù)換成0,得到如圖所示的0-1三角數(shù)表,從上往下數(shù),第1次全行的數(shù)都為1的是第1行,第二次全行的數(shù)都為1的是第3行,…,那么第61行中1的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和Sn,滿足Sn=-
1
2
n2+2n,則Sn的最大值為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對數(shù)函數(shù)f(x)=logax具有性質:f(
1
x
)=-f(x),請寫出另一函數(shù)g(x)(不是對數(shù)函數(shù)),也滿足g(
1
x
)=-g(x),且它的定義域必須包含(0,+∞),這個函數(shù)可以是
 

查看答案和解析>>

同步練習冊答案