【題目】已知定義在R上的奇函數(shù)f(x)滿足f(x)=f(2﹣x),且f(﹣1)=2,則f(1)+f(2)+f(3)+…+f(2017)的值為(
A.1
B.0
C.﹣2
D.2

【答案】C
【解析】解:∵f(2﹣x)=f(x),∴f[2﹣(2+x)]=f(2+x),即f(﹣x)=f(2+x),即﹣f(x)=f(2+x),
∴f(x+4)=f(4+x),故函數(shù)f(x)的周期為4.
∵定義在R上的奇函數(shù)f(x)滿足f(2﹣x)﹣f(x)=0,且f(﹣1)=2,
∴f(0)=0,f(1)=﹣f(﹣1)=﹣2,f(2)=f(0)=0,f(3)=f(﹣1)=2,f(4)=f(0)=0,
∴f(1)+f(2)+f(3)+…+f(2017)=504[f(1)+f(2)+f(3)+f(4)]+f(2017)
=504×(﹣2+0+2+0)+f(1)=0+(﹣2)=﹣2,
故選:C.
【考點(diǎn)精析】利用函數(shù)奇偶性的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={5},B={1,2},C={1,3,4},從這三個(gè)集合中各取一個(gè)元素構(gòu)成空間直角坐標(biāo)系上的坐標(biāo),則確定的不同點(diǎn)的個(gè)數(shù)為(
A.6
B.32
C.33
D.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合M={x|x2<4},N={x|x2﹣2x﹣3<0},則集合M∩N等于(
A.{x|x<﹣2}
B.{x|x>3}
C.{x|﹣1<x<2}
D.{x|2<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若f(n)=12+22+32+…+(2n)2 , 則f(k+1)與f(k)的遞推關(guān)系式是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題“對(duì)任意實(shí)數(shù)x∈[﹣1,2],關(guān)于x的不等式x2﹣a≤0恒成立”為真命題的一個(gè)充分不必要條件是(
A.a≥4
B.a>4
C.a>3
D.a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是偶函數(shù),且x<0時(shí),f(x)=3x﹣1,則x>0時(shí),f(x)=(
A.3x﹣1
B.3x+1
C.﹣3x﹣1
D.﹣3x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U={﹣2,﹣1,0,1,2},集合A={x∈Z|x2+x﹣2<0},則UA=(
A.{﹣2,1,2}
B.{﹣2,1}
C.{1,2}
D.{﹣1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明、小剛、小紅等5個(gè)人排成一排照相合影,若小明與小剛相鄰,且小明與小紅不相鄰,則不同的排法有種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班生活委員為了解在春天本班同學(xué)感冒與性別是否相關(guān),他收集了3月份本班同學(xué)的感冒數(shù)據(jù),并制出下面一個(gè)2×2列聯(lián)表:

感冒

不感冒

合計(jì)

男生

5

27

32

女生

9

19

28

合計(jì)

13

47

60

參考數(shù)據(jù)
P(K2≥2.072)≈0.15
P(K2≥2.706)≈0.10
P(K2≥6.635)≈0.010

由K2的觀測(cè)值公式,可求得k=2.278,根據(jù)給出表格信息和參考數(shù)據(jù),下面判斷正確的是(
A.在犯錯(cuò)概率不超過(guò)1%的前提下認(rèn)為該班“感冒與性別有關(guān)”
B.在犯錯(cuò)概率不超過(guò)1%的前提下不能認(rèn)為該班“感冒與性別有關(guān)”
C.有15%的把握認(rèn)為該班“感冒與性別有關(guān)”
D.在犯錯(cuò)概率不超過(guò)10%的前提下認(rèn)為該班“感冒與性別有關(guān)”

查看答案和解析>>

同步練習(xí)冊(cè)答案