A. | 在△ABC中,a:b:c=sinA:sinB:sinC | |
B. | 在△ABC中,若sin2A=sin2B,則A=B | |
C. | 在△ABC中,若sinA>sinB,則A>B;若A>B,則sinA>sinB | |
D. | 在△ABC中,$\frac{a}{sinA}$=$\frac{b+c}{sinB+sinC}$ |
分析 在△ABC中,由正弦定理可得 a=2RsinA,b=2RsingB,c=2RsinC,結(jié)合比例的性質(zhì),三角函數(shù)的圖象和性質(zhì),判斷各個(gè)選項(xiàng)是否成立,從而得出結(jié)論.
解答 解:A、在△ABC中,由正弦定理可得 a=2RsinA,b=2RsingB,c=2RsinC,
故有a:b:c=sinA:sinB:sinC,故A成立;
B、若sin2A=sin2B,等價(jià)于2A=2B,或2A+2B=π,
可得:A=B,或A+B=$\frac{π}{2}$,故B不成立;
C、∵若sinA>sinB,則sinA-sinB=2cos$\frac{A+B}{2}$sin$\frac{A-B}{2}$>0,
∵0<A+B<π,∴0<$\frac{A+B}{2}$<$\frac{π}{2}$,∴cos$\frac{A+B}{2}$>0,∴sin$\frac{A-B}{2}$>0,
∵0<A<π,0<B<π,∴-$\frac{π}{2}$<$\frac{A-B}{2}$<$\frac{π}{2}$,又sin$\frac{A-B}{2}$>0,∴$\frac{A-B}{2}$>0,∴A>B.
若A>B成立則有a>b,
∵a=2RsinA,b=2RsinB,
∴sinA>sinB成立;
故C正確;
D、由$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$,再根據(jù)比例式的性質(zhì)可得D成立.
故選:B.
點(diǎn)評(píng) 本題主要考查了正弦定理的應(yīng)用,結(jié)合比例的性質(zhì),三角函數(shù)的圖象和性質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m>0 | B. | m<0 | C. | m=0 | D. | m≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com