3.已知a=($\frac{3}{5}$)${\;}^{\frac{2}{5}}$,b=($\frac{3}{5}$)${\;}^{\frac{3}{5}}$,c=log${\;}_{\frac{3}{5}}$$\frac{2}{5}$,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

分析 利用指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:∵1>a=($\frac{3}{5}$)${\;}^{\frac{2}{5}}$>b=($\frac{3}{5}$)${\;}^{\frac{3}{5}}$,c=log${\;}_{\frac{3}{5}}$$\frac{2}{5}$>$lo{g}_{\frac{3}{5}}\frac{3}{5}$=1,
∴c>a>b,
故選:C.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知兩條平行直線3x+4y+1=0與6x+ay+12=0間的距離為d,則$\frac{a}epojfhr$的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知sin(π+α)=lg$\frac{1}{\root{3}{10}}$,求tan(α-$\frac{3π}{2}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列關(guān)于正弦定理的敘述中錯(cuò)誤的是(  )
A.在△ABC中,a:b:c=sinA:sinB:sinC
B.在△ABC中,若sin2A=sin2B,則A=B
C.在△ABC中,若sinA>sinB,則A>B;若A>B,則sinA>sinB
D.在△ABC中,$\frac{a}{sinA}$=$\frac{b+c}{sinB+sinC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且A=$\frac{π}{6}$,(1+$\sqrt{3}$)c=2b,則C=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求函數(shù)f(x)=$\frac{-3{x}^{4}+2{x}^{2}-5}{{x}^{3}}$的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)G是△ABC的重心,P是該平面內(nèi)-點(diǎn),且滿足$\overrightarrow{GP}$=3$\overrightarrow{GA}$+3$\overrightarrow{GB}$+2$\overrightarrow{GC}$,則△ABP與△ABC的面積之比是( 。
A.1:2B.1:3C.1:4D.1:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知b,c∈R,二次函數(shù)f(x)=x2+bx+c.
(I)對(duì)任意的實(shí)數(shù)c,存在x0∈[-1,2],使得|f(x0)|≥5,求正數(shù)b的取值范圍;
(2)若f(x)在(0,1)上與x軸有兩個(gè)不同的交點(diǎn),求c2+(1+b)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知拋物線y=-2x2+x-$\frac{1}{8}$和點(diǎn)A($\frac{1}{4}$,$\frac{11}{8}$).過點(diǎn)F($\frac{1}{4}$,-$\frac{1}{8}$)任作直線,交拋物線于B,C兩點(diǎn).
(1)求△ABC的重心軌跡方程,并表示y=f(x)形式;
(2)若數(shù)列{xk},0<x1<$\frac{1}{2}$,滿足xk+1=f(xk).求證:$\sum_{k=1}^{n}$xk+1k<$\frac{3}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案