12.如圖AB是圓O的直徑,點C是圓O上不同于A,B的一點,點V是圓O所在平面外一點.
(Ⅰ)若點E是AC的中點,求證:OE∥平面VBC;
(Ⅱ)若VA=VB=VC=AB,求直線VC與平面ABC所成角.

分析 (Ⅰ)由三角形中位線定理得OE∥BC,由此能證明OE∥平面VBC.
(Ⅱ)連接OC,推導出∠VCO為直線VC與平面ABC所成角,由此能求出直線VC與平面ABC所成角.

解答 證明:(Ⅰ)在△ABC中,∵O、E分為AB、AC中點,
∴OE∥BC,…(2分)
又∵OE?平面VBC,BC?平面VBC,
∴OE∥平面VBC…(5分)
解:(Ⅱ)連接OC,∵O為AB的中點,且VA=VB,
∴VO⊥AB,…(7分)
又∵VB=VC、OB=OC,∴△VOB≌△VOC,
∴VO⊥OC,∴VO⊥平面ABC,…(9分)
∴∠VCO為直線VC與平面ABC所成角,…(10分)
∵VC=AB=2OC,∴∠VCO=60°.
∴直線VC與平面ABC所成角為60°…(12分)

點評 本題考查線面平行的證明,考查線面角的大小的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.下列關于正弦定理的敘述中錯誤的是(  )
A.在△ABC中,a:b:c=sinA:sinB:sinC
B.在△ABC中,若sin2A=sin2B,則A=B
C.在△ABC中,若sinA>sinB,則A>B;若A>B,則sinA>sinB
D.在△ABC中,$\frac{a}{sinA}$=$\frac{b+c}{sinB+sinC}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知b,c∈R,二次函數(shù)f(x)=x2+bx+c.
(I)對任意的實數(shù)c,存在x0∈[-1,2],使得|f(x0)|≥5,求正數(shù)b的取值范圍;
(2)若f(x)在(0,1)上與x軸有兩個不同的交點,求c2+(1+b)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知圓C與兩平行線5x+2$\sqrt{2}$y+3=0和5x+2$\sqrt{2}$y-63=0都相切,且圓心在x軸上.
(Ⅰ)求圓C的方程;
(Ⅱ)若過原點的動直線l與圓C相交于不同的兩點A,B,求線段AB的中點M的軌跡C1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設a=20.3,b=log20.3,c=0.32,則a,b,c的大小關系是( 。
A.a>b>cB.a>c>bC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知拋物線y2=ax上一點M(4,b)到焦點的距離為6.
(Ⅰ)求拋物線的方程;
(Ⅱ)若此拋物線與直線y=kx-2交于不同的兩點A、B,且AB中點的橫坐標為2,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知拋物線y=-2x2+x-$\frac{1}{8}$和點A($\frac{1}{4}$,$\frac{11}{8}$).過點F($\frac{1}{4}$,-$\frac{1}{8}$)任作直線,交拋物線于B,C兩點.
(1)求△ABC的重心軌跡方程,并表示y=f(x)形式;
(2)若數(shù)列{xk},0<x1<$\frac{1}{2}$,滿足xk+1=f(xk).求證:$\sum_{k=1}^{n}$xk+1k<$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=x2+ax+3-a,a∈R.
(1)求a的取值范圍,使y=f(x)在閉區(qū)間[-1,3]上是單調(diào)函數(shù);
(2)當0≤x≤2時,函數(shù)y=f(x)的最大值是關于a的函數(shù)M(a),求M(a).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.直線y=2與函數(shù)y=tan$\frac{1}{2}$x圖象相交,則相鄰兩焦點間的距離是2π.

查看答案和解析>>

同步練習冊答案