設(shè)函數(shù)f(x)=x|x-a|+b,a,b∈R
(1)若a=1,b=-
1
4
,求函數(shù)f(x)的零點(diǎn);
(2)若函數(shù)f(x)在[0,1]上存在零點(diǎn),求實(shí)數(shù)b的取值范圍.
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意得,x|x-1|-
1
4
=0,討論去絕對(duì)值號(hào)求解即可;
(2)函數(shù)f(x)在[0,1]上存在零點(diǎn),即x|x-a|=-b在[0,1]上有解,令g(x)=x|x-a|,只需-b∈{y|y=g(x),x∈[0,1]};故討論g(x)=x|x-a|的值域即可.
解答: 解:(1)由題意得,x|x-1|-
1
4
=0;
①當(dāng)x≥1時(shí),x(x-1)=
1
4

解得x=
1+
2
2
;
②當(dāng)x<1時(shí),x(1-x)=
1
4
;
解得x=
1
2
;
故函數(shù)f(x)的零點(diǎn)為
1+
2
2
,
1
2
;
(2)函數(shù)f(x)在[0,1]上存在零點(diǎn),即x|x-a|=-b在[0,1]上有解,
令g(x)=x|x-a|,只需-b∈{y|y=g(x),x∈[0,1]};
當(dāng)a≤0時(shí),g(x)=x|x-a|=x(x-a)在[0,1]遞增,
所以g(x)∈[0,1-a],
即a-1≤b≤0;
當(dāng)a≥1時(shí),g(x)=x|x-a|=-x(x-a),對(duì)稱軸x=
a
2
;
又當(dāng)a≥2時(shí),g(x)在[0,1]遞增,所以g(x)∈[0,a-1],
即1-a≤b≤0;
當(dāng)1<a<2時(shí),g(x)在[0,
a
2
]遞增,[
a
2
,1]遞減,
所以g(x)∈[0,
a2
4
],
即-
a2
4
≤b≤0;
當(dāng)0<a<1時(shí),g(x)=x|x-a|=
-x2+ax,x∈[0,a]
x2-ax,x∈[a,1]

易知,g(x)在[0,
a
2
]
遞增,[
a
2
,a]
遞減,[a,1]遞減,
所以f(x)min=0,f(x)max={f(a),f(1)}={
a2
4
,1-a}
,
當(dāng)0<a≤2(
2
-1)
,f(x)max=f(1)=1-a,
所以g(x)∈[0,1-a],即a-1≤b≤0;
當(dāng)2(
2
-1)<a<1,
f(x)max=f(a)=
a2
4
,所以g(x)∈[0,
a2
4
],
即-
a2
4
≤b≤0;
綜上所述:當(dāng)a≤2(
2
-1)時(shí),a-1≤b≤0;
當(dāng)2(
2
-1)<a<2,-
a2
4
≤b≤0;
當(dāng)a≥2時(shí),1-a≤b≤0.
點(diǎn)評(píng):本題考查了絕對(duì)值函數(shù)的應(yīng)用,特別考查了分類討論的數(shù)學(xué)思想應(yīng)用,注意分類的標(biāo)準(zhǔn),屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(sinx+cosx)2-2
3
cos2x+
3

(1)將f(x)的圖象向左平移m(m>0)個(gè)單位后,得到偶函數(shù)g(x)的圖象,求m的最小值;
(2)在區(qū)間[0,π]上,求滿足f(x)≤2的x的取值集合M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱P-ABCD的底面ABCD為正方形,PA⊥底面ABCD,E、F分別是AC、PB的中點(diǎn).
(1)求證:EF∥平面PCD;
(2)求證:平面PBD⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)數(shù)列{an},a1=
1
2
,且an+1=
2an
an+2
(*)
(1)求證:{
1
an
}
是等差數(shù)列,并求{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足bn=e
1
an
,若
mb1b2bm
(m∈N,m≥2),仍是{bn}中的項(xiàng),求m在區(qū)間[2,2006]中的所有可能值之和S;
(3)若將上述遞推關(guān)系(*)改為:an+1
2an
an+2
,且數(shù)列{nan}中任意項(xiàng)nan<p,試求滿足要求的實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,其中a1=1,且當(dāng)n≥2,an=
an-1
2an-1+1
,求通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a4=6,a6=10.
(1)求數(shù)列{an}的通項(xiàng)公式an,前n項(xiàng)和Sn
(2)設(shè)等比數(shù)列{bn}的各項(xiàng)均為正數(shù),前n項(xiàng)和為Tn,若b3=a3,T2=3,求通項(xiàng)公式bn,前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ex(x-1)的圖象在點(diǎn)(1,f(1))處的切線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,
3
2
),
b
=(
1
2
,cosx)
,f(x)=
a
b

(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠從2001年開始,近八年以來生產(chǎn)某種產(chǎn)品的情況是:前四年年產(chǎn)量的增長(zhǎng)速度越來越快,后四年年產(chǎn)量的增長(zhǎng)速度保持不變,則該廠這種產(chǎn)品的產(chǎn)量與時(shí)間的函數(shù)圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案