10.求值:2${\;}^{lo{g}_{2}\frac{1}{4}}$-($\frac{8}{27}$)${\;}^{-\frac{2}{3}}$+lg$\frac{1}{100}$+($\sqrt{2}$-1)lg1=-3.

分析 由已知條件利用對(duì)數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì)和運(yùn)算法則求解.

解答 解:2${\;}^{lo{g}_{2}\frac{1}{4}}$-($\frac{8}{27}$)${\;}^{-\frac{2}{3}}$+lg$\frac{1}{100}$+($\sqrt{2}$-1)lg1
=$\frac{1}{4}$-[($\frac{2}{3}$)3]${\;}^{-\frac{2}{3}}$-2+($\sqrt{2}-1$)0
=$\frac{1}{4}$-$\frac{9}{4}$-2+1
=-3.
故答案為:-3.

點(diǎn)評(píng) 本題考查對(duì)數(shù)式、指數(shù)式的化簡求值,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意對(duì)數(shù)、指數(shù)的性質(zhì)、運(yùn)算法則的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.點(diǎn)A(3,-4)與點(diǎn)B(5,8)關(guān)于直線l對(duì)稱,則直線l的方程為x+6y-16=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2-(a+1)x+b
(1)若b=-1,函數(shù)y=f(x)在x∈[2,3]上有一個(gè)零點(diǎn),求a的取值范圍
(2)若a=b,且?a∈[2,3]都有f(x)<0成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若a>0且a≠1,則函數(shù)y=ax-2-1的圖象必過定點(diǎn)(2,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.己知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的離心率為2,過點(diǎn)P(0,m)(m>0)斜率為1的直線與雙曲線C交于A、B兩點(diǎn),且$\overrightarrow{AP}$=2$\overrightarrow{PB}$,$\overrightarrow{OA}$•$\overrightarrow{OB}$=-2
(Ⅰ)求雙曲線方程;
(Ⅱ)如果Q為雙曲線C右支上動(dòng)點(diǎn)F為雙曲線的右焦點(diǎn),在x軸的負(fù)半釉上是否存在定點(diǎn)M便得∠QFM=2∠QMF?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合P={x|x2=4},集合Q={x|ax=4},若Q⊆P,則a的值為(  )
A.2B.-2C.2或-2D.0,2,或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若集合A={x||1-2x|<3},B={x|$\frac{1+2x}{3-x}$<0},那么A∩B=( 。
A.(-1,$\frac{1}{2}$)∪(2,3)B.(2,3)C.(-$\frac{1}{2}$,2)D.(-1,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知復(fù)數(shù)z滿足$\overline z+|z|i=3+2i$,求復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)h(x)=x+$\frac{m}{x}$,x∈[$\frac{1}{4}$,5],其中m是不等于零的常數(shù),
(1)m=1時(shí),直接寫出h(x)的值域;
(2)求h(x)的單調(diào)遞增區(qū)間;
(3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=nin{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.例如:f1(x)=cosx,x∈[0,π],則,f2(x)=1,x∈[0,π],
(理)當(dāng)m=1時(shí),設(shè)M(x)=$\frac{h(x)+h(4x)}{2}$+$\frac{|h(x)-h(4x)|}{2}$,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;
(文)當(dāng)m=1時(shí),|h1(x)-h2(x)|≤n恒成立,求n的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案