1.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=$\frac{1}{2}$,an+1=$\frac{n+1}{2n}$an
(1)證明:數(shù)列{$\frac{{a}_{n}}{n}$}是等比數(shù)列;
(2)求通項(xiàng)an與前n項(xiàng)的和Sn

分析 (1)由條件可得$\frac{{a}_{n+1}}{n+1}$=$\frac{1}{2}$$•\frac{{a}_{n}}{n}$,由等比數(shù)列的定義,即可得證;
(2)由(1)可得通項(xiàng)an,再由數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,計(jì)算即可得到.

解答 解:(1)證明:a1=$\frac{1}{2}$,an+1=$\frac{n+1}{2n}$an
可得$\frac{{a}_{n+1}}{n+1}$=$\frac{1}{2}$$•\frac{{a}_{n}}{n}$,
即有數(shù)列{$\frac{{a}_{n}}{n}$}是首項(xiàng)為$\frac{1}{2}$,公比為$\frac{1}{2}$的等比數(shù)列;
(2)由(1)可得$\frac{{a}_{n}}{n}$=($\frac{1}{2}$)n
即有an=n($\frac{1}{2}$)n,
和Sn=1•$\frac{1}{2}$+2•$\frac{1}{4}$+3•$\frac{1}{8}$+…+n($\frac{1}{2}$)n,
$\frac{1}{2}$Sn=1•$\frac{1}{4}$+2•$\frac{1}{8}$+3•$\frac{1}{16}$+…+n($\frac{1}{2}$)n+1,
兩式相減可得,$\frac{1}{2}$Sn=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+$\frac{1}{16}$+…($\frac{1}{2}$)n-n($\frac{1}{2}$)n+1
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$--n($\frac{1}{2}$)n+1
化簡(jiǎn)可得,前n項(xiàng)的和Sn=2-$\frac{2+n}{{2}^{n}}$.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的求和方法:錯(cuò)位相減法,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.甲、乙兩個(gè)人在一座共有6層大樓的一樓進(jìn)人電梯,假設(shè)每個(gè)人自第二層開(kāi)始每一層離開(kāi)電梯是等可能的,求甲離開(kāi)的樓層比乙離開(kāi)的樓層高的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.定義$\sum_{i=1}^{n}$ai=a1+a2+…+an,并設(shè)f(x)=$\frac{{a}^{x}}{{a}^{x}+\sqrt{a}}$,求$\sum _{j=1}^{2003}$f($\frac{i}{2004}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.定義在R上的函數(shù)f(x)滿足f′(x)>1-f(x),其中f′(x)是f(x)的導(dǎo)函數(shù),e為自然對(duì)數(shù)的底數(shù),則下列正確的是( 。
A.ef(1)-e>e2f(2)-e2
B.e2015f(2015)-e2015>e2016f(2016)-e2016
C.e2f(2)+e2>ef(1)+e
D.e2016f(2016)+e2016<e2015f(2015)+e2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知向量$\overrightarrow{p}$=(an,-2n),$\overrightarrow{q}$=(2n+1,an+1),n∈N*,向量$\overrightarrow{p}$ 與$\overrightarrow{q}$ 垂直,且a1=1
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=log2(an+1),求數(shù)列{an•bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}中,已知a1=1,an+1=$\frac{2n+2}{n}$an(n∈N*).
(1)證明:數(shù)列{$\frac{{a}_{n}}{n}$}是等比數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.?dāng)?shù)列{an}滿足:a1=$\frac{1}{2}$,an+1=$\frac{n}{n+2}$an+(1-$\frac{n}{n+2}$),則{an}的通項(xiàng)公式an=$\frac{{n}^{2}+n-1}{{n}^{2}+n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.拋物線y2=16x的焦點(diǎn)為F,點(diǎn)A在y軸上,且滿足|$\overrightarrow{OA}$|=|$\overrightarrow{OF}$|,拋物線的準(zhǔn)線與x軸的交點(diǎn)是B,則$\overrightarrow{FA}$•$\overrightarrow{AB}$=( 。
A.-4B.4C.0D.-4或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{2x-{x}^{2},}}&{0≤x≤1}\\{-{x}^{2},}&{-1≤x≤0}\end{array}\right.$,則函數(shù)f(x)圖象與直線y=x圍成的封閉圖形的面積是$\frac{π}{4}+\frac{17}{24}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案