(本小題滿分12分)
某車間甲組有10名工人,其中有4名女工人;乙組有5名工人,其中有3名女工人,現(xiàn)采用分層抽樣方法(層內(nèi)采用不放回簡單隨機(jī)抽樣)從甲、乙兩組中共抽取3名工人進(jìn)行技術(shù)考核.
(I)求從甲、乙兩組各抽取的人數(shù);          
(II)求從甲組抽取的工人中恰有1名女工人的概率;
(III)記表示抽取的3名工人中男工人數(shù),求的分布列及數(shù)學(xué)期望.
:⑴按照抽取的比例,甲組和乙組抽取的人數(shù)分別為
所以應(yīng)在甲組抽取2人,在乙組抽取1人.
⑵設(shè)從甲組抽取的工人中恰有1名女工人的事件為A,則P(A)=.
⑶依題意
,
,的分布列如下表:
    
     0
      1
     2
     3
      P
    
     
    
    
所以的數(shù)學(xué)期望
:⑴根據(jù)分層抽樣的抽取比例可以確定各組抽取的人數(shù),容易求.⑵從甲組抽取的工人中恰有1名女工人,那么還需抽取1名男工人,根據(jù)古典概型公式,即可.⑶抽取的3名工人中男工人數(shù)可以是0,1,2,3,有四種情況,一一列出,構(gòu)成分布列,根據(jù)數(shù)學(xué)期望公式完成計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某學(xué)校為了選拔學(xué)生參加“XX市中學(xué)生知識(shí)競(jìng)賽”,先在本校進(jìn)行選拔測(cè)試(滿分150分),若該校有100名學(xué)生參加選拔測(cè)試,并根據(jù)選拔測(cè)試成績作出如圖所示的頻率分布直方圖.
(Ⅰ)根據(jù)頻率分布直方圖,估算這100名學(xué)生參加選拔測(cè)試的平均成績;
(Ⅱ)若通過學(xué)校選拔測(cè)試的學(xué)生將代表學(xué)校參加市知識(shí)競(jìng)賽,知識(shí)競(jìng)賽分為初賽和復(fù)賽,初賽中每人最多有5次答題機(jī)會(huì),累計(jì)答對(duì)3題或答錯(cuò)3題即終止,答對(duì)3題者方可參加復(fù)賽.假設(shè)參賽者甲答對(duì)每一個(gè)題的概率都是
2
3
,求甲在初賽中答題個(gè)數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)為平面上過點(diǎn)(0,1)的直線,的斜率等可能的取,,0,,,用d表示坐標(biāo)原點(diǎn)到的距離,則隨機(jī)變量d的均值為Ed=       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)

2008年為山東素質(zhì)教育年,為響應(yīng)素質(zhì)教育的實(shí)施,某中學(xué)號(hào)召學(xué)生在放假期間至少參加一次社會(huì)實(shí)踐活動(dòng)(以下簡稱活動(dòng)).現(xiàn)統(tǒng)計(jì)了該校100名學(xué)生參加活動(dòng)的情況,他們參加活動(dòng)的次數(shù)統(tǒng)計(jì)如圖所示.
(1)求這些學(xué)生參加活動(dòng)的人均次數(shù);
(2)從這些學(xué)生中任選兩名學(xué)生,求他們參加活動(dòng)次數(shù)恰好相等的概率;
(3)從這些學(xué)生中任選兩名學(xué)生,用表示這兩人參加活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)某果園要將一批水果用汽車從所在城市甲運(yùn)至銷售商所在城市乙。已知從城市甲到城市乙只有兩條公路,且運(yùn)費(fèi)由果園承擔(dān)。若果園恰能在約定日期(×月×日)將水果送到,則銷售商一次性支付給果園20萬元;若在約定日期前送到,每提前一天銷售商將多支付給果園1萬元。若在約定日期后運(yùn)到,每遲到一天銷售商將少支付給果園l萬元。為保證水果新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運(yùn)送水果。已知下表內(nèi)的信息:
統(tǒng)計(jì)信息
汽車行駛路線
不堵車的情況下到達(dá)
城市乙所需時(shí)間(天)
堵車的情況下到達(dá)
城市乙所需時(shí)間(天)
堵車的
概率
運(yùn)費(fèi)
(萬元)
公路1
2
3

1.6
公路2
1
4

0.8
(1)記汽車走公路1時(shí)果園獲得的毛利潤為(單位:萬元),求的分布列和數(shù)學(xué)期望;
(2)假設(shè)你是果園的決策者,你選擇哪條公路運(yùn)送水果有可能讓果園獲得的毛利潤更多?


18.4
17.4
P
0.9
0.1
 
 
注:毛利潤=銷售商支付給果園的費(fèi)用-運(yùn)費(fèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某班共有學(xué)生40人,將一次數(shù)學(xué)考試成績(單位:分)繪制成頻率分布直方圖,如圖所示.
(Ⅰ)請(qǐng)根據(jù)圖中所給數(shù)據(jù),求出a的值;
(Ⅱ)從成績?cè)赱50,70)內(nèi)的學(xué)生中隨機(jī)選3名學(xué)生,求這3名學(xué)生的成績都在[60,70)內(nèi)的概率;
(Ⅲ)為了了解學(xué)生本次考試的失分情況,從成績?cè)赱50,70)內(nèi)的學(xué)生中隨機(jī)選取3人的成績進(jìn)行分析,用X表示所選學(xué)生成績?cè)赱60,70)內(nèi)的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩名同學(xué)參加一項(xiàng)射擊游戲,兩人約定,其中任何一人每射擊一次,擊中目標(biāo)得2分,未擊中目標(biāo)得0分.若甲、乙兩名同學(xué)射擊的命中率分別為
3
5
和p,且甲、乙兩人各射擊一次所得分?jǐn)?shù)之和為2的概率為
9
20
,假設(shè)甲、乙兩人射擊互不影響
(1)求p的值;
(2)記甲、乙兩人各射擊一次所得分?jǐn)?shù)之和為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)離散型隨機(jī)變量ξ滿足Eξ=3,Dξ=1,則E[3(ξ-1)]等于( 。
A.27B.24C.9D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

數(shù)據(jù)的標(biāo)準(zhǔn)差是______________。

查看答案和解析>>

同步練習(xí)冊(cè)答案