分析 根據(jù)垂徑定理得到過M的弦最短時,所對的劣弧最短,而當直線l與直線AM垂直時得到的弦最短,根據(jù)兩直線垂直時斜率乘積為-1得到直線l的斜率,寫出直線l的方程即可.
解答 解:當劣弧最短時,MA與直線l垂直.所以kl•kAM=-1,圓心坐標為(2,0)得到直線AM的斜率kAM=2,
所以kl=-$\frac{1}{2}$
所以過M(1,-2)的直線l的方程為:y+2=-$\frac{1}{2}$(x-1)化簡得x+2y+3=0.
故答案為:x+2y+3=0.
點評 考查學生靈活運用垂徑定理解決數(shù)學問題的能力,掌握兩直線垂直時所取的條件是斜率乘積等于-1,會根據(jù)條件寫出直線的一般式方程.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若命題p、q中至少有一個為真命題,則“p∧q”是真命題 | |
B. | 不等式ac2>bc2成立的充要條件是a>b | |
C. | “正四棱錐的底面是正方形”的逆命題是真命題 | |
D. | 若k>0,則方程x2+2x-k=0有實根 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $π+\sqrt{3}π$ | B. | $\frac{4}{3}π$ | C. | $2π+\frac{{2\sqrt{3}}}{3}π$ | D. | $π+\frac{{\sqrt{3}}}{3}π$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=lgx4,g(x)=4lgx | B. | $f(x)=\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}\right.$,$g(x)=\sqrt{x^2}$ | ||
C. | $f(x)=\frac{{{x^2}-4}}{x-2}$,g(x)=x+2 | D. | $f(x)=\sqrt{x+1}•\sqrt{x-1}$,$g(x)=\sqrt{{x^2}-1}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com