分析 (1)可在恒等式中令x=y=0,即可解出f(0)=0,
(2)由題設(shè)條件對(duì)任意x1、x2在所給區(qū)間內(nèi)比較f(x2)-f(x1)與0的大小即可;
(3)由原不等式可化為:f(ax-2+x-x2)+1<3,化為f[-x2+(a+1)x-2]<f(1),對(duì)任意的x∈[-1,+∞)恒成立,然后構(gòu)造函數(shù)g(x)=x2-(a+1)x+3,即g(x)min>0成立即可,利用二次函數(shù)的性質(zhì),通過(guò)分類討論求解實(shí)數(shù)a的取值范圍.
解答 解:(1)由題設(shè),令x=y=0,
恒等式可變?yōu)閒(0+0)=f(0)+f(0)-1,
解得f(0)=1,
(2)任取x1<x2,則x2-x1>0,
由題設(shè)x>0時(shí),f(x)>1,可得f(x2-x1)>1,
∵f(x+y)=f(x)+f(y)-1,
∴f(x2)=f[x1+(x2-x1)]=f(x1)+f(x2-x1)-1>f(x1),
所以 f(x)是R上增函數(shù);
(3)由已知條件有:f(ax-2)+f(x-x2)=f(ax-2+x-x2)-1
故原不等式可化為:f(ax-2+x-x2)<4
即f[-x2+(a+1)x-2]<2∵f(6)=f(3)+f(3)-1∴f(3)=4
∴f(ax-2+x-x2)<f(3)
∴-x2+ax+x-2<3
∴x2-(a+1)x+5>0對(duì)任意的x∈[-1,+∞)恒成立.
則$\left\{\begin{array}{l}{f(-1)≥0}\\{\frac{a+1}{2}≤-1}\end{array}\right.$
即$\left\{\begin{array}{l}{(-1)^{2}-(a+1)×(-1)+5>0}\\{a+1≤-2}\end{array}\right.$
∴a的取值范圍是-7<a≤-3.
點(diǎn)評(píng) 本題考點(diǎn)是抽象函數(shù)及其應(yīng)用,考查用賦值法求函數(shù)值,以及靈活利用所給的恒等式證明函數(shù)的單調(diào)性,此類題要求答題者有較高的數(shù)學(xué)思辨能力,能從所給的條件中組織出證明問(wèn)題的組合來(lái).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0.3 | B. | 0.7 | C. | 0.1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com