18.若直線y=2x+m與曲線$y=3+\sqrt{4x-{x^2}}$有公共點(diǎn),則m的取值范圍是$[-5,2\sqrt{5}-1]$.

分析 曲線$y=3+\sqrt{4x-{x^2}}$表示以點(diǎn)(2,3)為圓心,2為半徑的圓的上半圓,而直線y=2x+m的斜率為2,截距為m,在同一個(gè)坐標(biāo)系中作出它們的圖象,數(shù)形結(jié)合可得.

解答 解:$y=3+\sqrt{4x-{x^2}}$理可得(x-2)2+(y-3)2=4,
故曲線$y=3+\sqrt{4x-{x^2}}$表示以點(diǎn)(2,3)為圓心,2為半徑的圓的上半圓,
而直線y=2x+m的斜率為2,截距為m,在同一個(gè)坐標(biāo)系中作出它們的圖象:
直線與曲線相切可得$\frac{|1+m|}{\sqrt{5}}$=2,解得m=2$\sqrt{5}$-1,或m=-2$\sqrt{5}$-1,(舍去)
直線過點(diǎn)(4,3),m=-5
故直線y=2x+m與曲線$y=3+\sqrt{4x-{x^2}}$有公共點(diǎn),m的取值范圍是$[-5,2\sqrt{5}-1]$.
故答案為:$[-5,2\sqrt{5}-1]$.

點(diǎn)評 本題考查直線與圓相交的性質(zhì),數(shù)形結(jié)合是解決問題的關(guān)鍵,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.定義在R上的函數(shù)f(x)滿足$f(x+\frac{3}{2})=f(x-\frac{3}{2})$,f(x)+f(-x)=0且f(1)=0,求x∈[0,6]上至少有7個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=\frac{1}{2}sin2xsinφ+{cos^2}xcosφ-\frac{1}{2}sin(\frac{π}{2}+φ)(0<φ<π)$,其圖象過點(diǎn)($\frac{π}{6}$,$\frac{1}{2}$).
(Ⅰ)求φ的值;
(Ⅱ)將函數(shù)y=f(x)的圖象上個(gè)點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$,縱坐標(biāo)不變,得到函數(shù)y=g(x)若A是銳角△ABC的最小內(nèi)角,求g(A)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列關(guān)于命題的說法錯(cuò)誤的是( 。
A.命題“若x2-1=0,則x=1”的逆否命題為“若x≠1,則x2-1≠0”
B.“x=1”是“x2-3x+2=0”的充分不必要條件
C.若集合A={x|kx2+4x+4=0}中只有一個(gè)元素,則k=1
D.對于命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,均有x2+x+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知一條曲線C在y軸右邊,C上每一點(diǎn)到點(diǎn)$F(\frac{1}{4}\;,\;\;0)$的距離減去它到y(tǒng)軸距離的差都是$\frac{1}{4}$.點(diǎn)A,B在曲線C上且位于x軸的兩側(cè),$\overrightarrow{OA}•\overrightarrow{OB}$=2(其中O為坐標(biāo)原點(diǎn)).
(Ⅰ)求曲線C的方程;
(Ⅱ)證明:直線AB恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=(x2-x+1)ex
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[-1,1]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.y=sinx(0≤x≤2π)與x軸所圍成的圖形面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p:3+3=5,命題q:6>3,則下列說法正確的是(  )
A.p∧q為真,p∨q為假B.p∧q為假,¬p為假C.p∨q為真,¬q為假D.p∨q為假,¬p為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.拋物線y2=x的準(zhǔn)線方程為( 。
A.x=$\frac{1}{4}$B.x=-$\frac{1}{4}$C.y=$\frac{1}{4}$D.y=-$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊答案