分析 作出不等式組對應(yīng)的平面區(qū)域,設(shè)z=2x+y,利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,由圖象可知當(dāng)直線y=-2x+z經(jīng)過點A時,
直線y=-2x+z的截距最大,此時z最大,
由$\left\{\begin{array}{l}{3x-y-6=0}\\{x-y+2=0}\end{array}\right.$,解得A(4,6),
此時zmax=2×4+6=14.
故答案為:14.
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | v1>v2,s1>s2 | B. | v1<v2,s1>s2 | C. | v1>v2,s1<s2 | D. | v1<v2,s1<s2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-\sqrt{2},\sqrt{2})$ | B. | $(0,\sqrt{2})$ | C. | $(-\sqrt{2},-\frac{{\sqrt{6}}}{2})∪(\frac{{\sqrt{6}}}{2},\sqrt{2})$ | D. | $(\frac{{\sqrt{6}}}{2},\sqrt{2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com