1.1-2+4-8+…+(-1)n-1•2n-1等于$\frac{1}{3}[1-(-2)^{n}]$.

分析 數(shù)列{(-1)n-1•2n-1}是首項(xiàng)為1,公比為-2的等比數(shù)列,利用等比數(shù)列的前n項(xiàng)和公式即可得出.

解答 解:數(shù)列{(-1)n-1•2n-1}是首項(xiàng)為1,公比為-2的等比數(shù)列,
∴原式=$\frac{1-(-2)^{n}}{1-(-2)}$=$\frac{1}{3}[1-(-2)^{n}]$.
故答案為:$\frac{1}{3}[1-(-2)^{n}]$.

點(diǎn)評(píng) 本題考查了等比數(shù)列的前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知實(shí)數(shù)a,b,c,d滿足$\frac{a-{e}^{a}}$=$\frac{1+c}{d-1}$=1,其中e是自然對(duì)數(shù)的底,則(a-c)2+(b-d)2的最小值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在直角坐標(biāo)系xOy中,直線y=x與拋物線x2=4y相交于O、A兩點(diǎn),則點(diǎn)A到拋物線焦點(diǎn)的距離為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.用數(shù)學(xué)歸納法證明f(n)=3×52n+1+23n+1(n∈N*)能被17整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.同時(shí)擲一對(duì)均勻的骰子.
(1)用列舉的方法列出所有可能的結(jié)果,共有多少種可能的結(jié)果?
(2)計(jì)算下列事件的概率;
①點(diǎn)數(shù)之和不大于7;
②點(diǎn)數(shù)之和為偶數(shù);
③點(diǎn)數(shù)之和等于3的倍數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知變量x、y滿足$\left\{\begin{array}{l}x-4y+3≤0\\ x≥1\\ x+y-4≤0\end{array}\right.$,點(diǎn)(x,y)對(duì)應(yīng)的區(qū)域的面積$\frac{8}{5}$,$\frac{{x}^{2}+{y}^{2}}{xy}$的取值范圍為[2,$\frac{10}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在空間直角坐標(biāo)系0-xyz中,下列說(shuō)法正確的是( 。
A.向量$\overrightarrow{AB}$的坐標(biāo)與點(diǎn)B坐標(biāo)相同
B.向量$\overrightarrow{AB}$的坐標(biāo)與點(diǎn)A坐標(biāo)相同
C.向量$\overrightarrow{AB}$的坐標(biāo)與向量$\overrightarrow{OB}$坐標(biāo)相同
D.向量$\overrightarrow{AB}$的坐標(biāo)與向量$\overrightarrow{OB}$-$\overrightarrow{OA}$坐標(biāo)相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知圓M:x2+y2-x-6y+c=0的圓心為M,與直線l:x+2y-3=0的兩個(gè)交點(diǎn)P,Q.
(Ⅰ)問(wèn)c取何值時(shí),滿足MP⊥MQ;
(Ⅱ)已知O是坐標(biāo)原點(diǎn),問(wèn)c取何值時(shí),滿足OP⊥OQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在長(zhǎng)方體ABCD-A1B1C1D1中,E,F(xiàn),G分別是棱AB,BC,CC1的中點(diǎn),P,Q,R分別在棱C1D1,A1D1,A1A上,且$\frac{{D}_{1}Q}{Q{A}_{1}}$=$\frac{AR}{R{A}_{1}}$=$\frac{{D}_{1}P}{P{C}_{1}}$=$\frac{1}{3}$.求證:平面EFG∥平面PQR.

查看答案和解析>>

同步練習(xí)冊(cè)答案