8.比較20.8與2log52的大小關(guān)系.

分析 由指數(shù)函數(shù)和對(duì)數(shù)函數(shù)可得20.8>1,2log52<1,可得結(jié)論.

解答 解:∵20.8>20=1,
2log52=log54<log55=1,
∴20.8>2log52

點(diǎn)評(píng) 本題考查不等式比較大小,涉及指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)g(x)=2x,若a>0,b>0且g(a)g(b)=2,則ab的取值范圍是$({0\;,\;\frac{1}{4}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知i為虛數(shù)單位,復(fù)數(shù)z=$\frac{1-i}{i}$,則|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知某校高三年級(jí)有140名學(xué)生,其中文科生40人,其余是理科生,現(xiàn)采用分層抽樣的方法從中抽取14
名學(xué)生進(jìn)行調(diào)研,則抽取的理科生的人數(shù)為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足:Sn=2nan-1,n∈N*
(1)求a1,a2的值;
(2)求證:an≤$\frac{2}{{2}^{n}-1}$;
(3)求數(shù)列{$\frac{a_{n}}{a_{n+1}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(x)=$\frac{3x}{a}$-2x2+lnx(a>0).若函數(shù)f(x)在[1,2]上為單調(diào)函數(shù),則a的取值范圍是(0,$\frac{2}{5}$]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在極坐標(biāo)系中,圓ρ=3上的點(diǎn)到直線(xiàn)$ρ(\sqrt{3}cosθ-sinθ)=2$的距離的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖,在等腰直角△ABO中,OA=OB=1,C為AB上靠近點(diǎn)A的四等分點(diǎn),過(guò)C作AB的垂線(xiàn)l,P為垂線(xiàn)上任一點(diǎn),則$\overrightarrow{OP}•(\overrightarrow{OB}-\overrightarrow{OA)}$等于( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.觀察等式:
sin210°+cos240°+sin10°cos40°=a
sin215°+cos245°+sin15°cos45°=a
sin220°+cos250°+sin20°cos50°=a
sin225°+cos255°+sin25°cos55°=a
(1)請(qǐng)根據(jù)以上等式規(guī)律,用特殊值求出a的值;
(2)歸納出一般的結(jié)論并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案