分析 令an=g(n).由an的定義易知g(n)=g(2n),且若n為奇數(shù)則g(n)=n.令f(n)=g(1)+g(2)+g(3)+…g(2n-1),則f(n+1)=$\frac{1}{2}×$2n[1+(2n+1-1)]+g(1)+g(2)+…+g(2n+1-2)=4n+f(n),即f(n+1)-f(n)=4n,分別取n為1,2,…,n并累加得f(n+1)-f(1)=4+42+…+4n,即可得出.
解答 解:令an=g(n).
由an的定義易知g(n)=g(2n),且若n為奇數(shù)則g(n)=n
令f(n)=g(1)+g(2)+g(3)+…g(2n-1)
則f(n+1)=g(1)+g(2)+g(3)+…g(2n+1-1)=1+3+…+(2n+1-1)+g(2)+g(4)+…+g(2n+1-2)
=$\frac{1}{2}×$2n[1+(2n+1-1)]+g(1)+g(2)+…+g(2n+1-2)=4n+f(n)
即f(n+1)-f(n)=4n
分別取n為1,2,…,n并累加得f(n+1)-f(1)=4+42+…+4n=$\frac{4(1-{4}^{n})}{1-4}$=$\frac{4}{3}$(4n-1)
又f(1)=g(1)=1,∴f(n+1)=$\frac{4}{3}$(4n-1)+1.
∴S${\;}_{{2}^{2016}-1}$=$\frac{{4}^{2016}-1}{3}$.
故答案為:$\frac{{{4^{2016}}-1}}{3}$.
點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式、遞推關(guān)系,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | 0 | 1 | 3 | 4 |
y | 2.2 | 4.3 | 4.8 | 6.7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | C. | 既奇又偶函數(shù) | D. | 非奇非偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=\sqrt{-{x^3}}$與$g(x)=x\sqrt{-x}$ | B. | $f(x)=\frac{(2x-1)(x-2)}{x-2}$與g(x)=2x-1 | ||
C. | f(x)=x0與g(x)=1 | D. | f(x)=x2-2x-1與g(t)=t2-2t-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+$\sqrt{3}$i | B. | -1-$\sqrt{3}$i | C. | $\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i | D. | -$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (8,9] | B. | (0,8) | C. | [8,9] | D. | (8,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com