1.下列各組函數(shù)是同一函數(shù)的是(  )
A.$f(x)=\sqrt{-{x^3}}$與$g(x)=x\sqrt{-x}$B.$f(x)=\frac{(2x-1)(x-2)}{x-2}$與g(x)=2x-1
C.f(x)=x0與g(x)=1D.f(x)=x2-2x-1與g(t)=t2-2t-1

分析 根據(jù)兩個(gè)函數(shù)的定義域相同,對應(yīng)關(guān)系也相同,判斷它們是同一函數(shù)即可.

解答 解:對于A:$f(x)=\sqrt{-{x}^{3}}$與$g(x)=x\sqrt{-x}$定義域都是為x≤0,但兩個(gè)函數(shù)的對應(yīng)法則不相同,所以不是相同函數(shù),故A不正確.
對于B:f(x)=$\frac{(2x-2)(x-2)}{x-2}$=x+1(x≠2),與g(x)=2x+1(x∈R)的定義域不同,∴不是同一函數(shù);故B不正確.
對于C:g(x)=1(x∈R),與f(x)=x0=1(x≠0)的定義域不同,∴不是同一函數(shù).故C不正確.
對于D:f(x)=x2-2x-1的定義域是R,g(t)=t2-2t-1的定義域是R,兩個(gè)函數(shù)的對應(yīng)法則相同,所以是相同函數(shù),故D正確.
故選D.

點(diǎn)評 本題考查了判斷兩個(gè)函數(shù)是否為同一函數(shù)的問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在復(fù)平面內(nèi),復(fù)數(shù)i(2-i)對應(yīng)的點(diǎn)位于第一象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知圓F1:(x+1)2+y2=16及點(diǎn)F2(1,0),在圓F1任取一點(diǎn)M,連接MF2并延長交圓F1于點(diǎn)N,連接F1N,過F2作F2P∥MF1交NF1于P,如圖所示.若從F2點(diǎn)引一條直線l交軌跡P于A,B兩點(diǎn),變化直線l (l的斜率一直存在),則$\frac{1}{{|F}_{2}A|}$+$\frac{1}{|{F}_{2}B|}$的值(  )
A.$\frac{4}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}+1}}{2}$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.用an表示自然數(shù)n的所有因數(shù)中最大的那個(gè)奇數(shù),例如:9的因數(shù)有1,3,9,則a9=9;10的因數(shù)有1,2,5,10,則a10=5,記數(shù)列{an}的前n項(xiàng)和為Sn,則S${\;}_{{2}^{2016}-1}$=$\frac{{{4^{2016}}-1}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)全集U={-3,-2,-1,0,1,2,3},集合E={x|x2-3x+2=0,x∈R},F(xiàn)={x|cos$\frac{πx}{2}$=0,x∈R},則(∁UE)∩F=(  )
A.{-3,-1,0,3}B.{-3,-1,3}C.{-3,-1,1,3}D.{-3,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求證:$\sqrt{10}-\sqrt{5}<\sqrt{7}-\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知圓錐的底面半徑為R,高為2R,在它的所有內(nèi)接圓柱中,側(cè)面積的最大值是(  )
A.$\frac{1}{4}π{R^2}$B.$\frac{1}{2}π{R^2}$C.πR2D.2πR2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=-x3+ax2+bx(a,b∈R)的圖象如圖所示,它與x軸在原點(diǎn)處相切,且x軸與函數(shù)圖象所圍成區(qū)域(圖中陰影部分)的面積為$\frac{1}{12}$,若函數(shù)f(x)在$({\frac{-1-k}{2},\frac{-1+k}{2}})$上單調(diào)增,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,高二月考考試后,將高二(3)班男生、女生各四名同學(xué)的數(shù)學(xué)成績(單位:分)用莖葉圖表示.女生某個(gè)數(shù)據(jù)的個(gè)位數(shù)模糊,記為x,已知男生、女生的平均成績相同.
(Ⅰ)求x的值,并判斷男生與女生哪組學(xué)生成績更穩(wěn)定;
(Ⅱ)在男生、女生中各抽取1名同學(xué),求這2名同學(xué)的得分之和低于200分的概率.

查看答案和解析>>

同步練習(xí)冊答案