14.函數(shù)f(x)=x${\;}^{\frac{1}{3}}$+x3為( 。
A.奇函數(shù)B.偶函數(shù)C.既奇又偶函數(shù)D.非奇非偶函數(shù)

分析 容易看出f(x)的定義域為R,關于原點對稱,并容易得出f(-x)=-f(x),從而便可得出f(x)為奇函數(shù).

解答 解:f(x)的定義域為R,且$f(-x)=(-x)^{\frac{1}{3}}+(-x)^{3}$=$-{x}^{\frac{1}{3}}-{x}^{3}$=-f(x);
∴f(x)為奇函數(shù).
故選A.

點評 考查奇函數(shù)的定義及根據(jù)定義判斷函數(shù)奇偶性的方法和過程,以及有理數(shù)指數(shù)冪的運算.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.為了完成銷售任務,甲、乙兩家服裝店在本月最后一天舉行大型優(yōu)惠促銷活動,現(xiàn)將兩家服裝店該日8個時段的成交量(單位:件)統(tǒng)計如表所示:
6791222201514
89112122191516
(Ⅰ)根據(jù)以上數(shù)據(jù),繪制甲、乙兩家服裝店該日8個時段成交量的莖葉圖;
(Ⅱ)現(xiàn)從乙店的成交量小于16的數(shù)據(jù)中隨機抽取兩個,求至少有一個數(shù)據(jù)小于10的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以原點O為極點,x軸的非負半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=2$\sqrt{3}$sinθ.
(Ⅰ)求圓C的直角做標方程;
(Ⅱ)圓C的圓心為C,點P為直線l上的動點,求|PC|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知圓F1:(x+1)2+y2=16及點F2(1,0),在圓F1任取一點M,連接MF2并延長交圓F1于點N,連接F1N,過F2作F2P∥MF1交NF1于P,如圖所示.若從F2點引一條直線l交軌跡P于A,B兩點,變化直線l (l的斜率一直存在),則$\frac{1}{{|F}_{2}A|}$+$\frac{1}{|{F}_{2}B|}$的值( 。
A.$\frac{4}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}+1}}{2}$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.點B是點A(1,2,3)在坐標平面yOz內(nèi)的射影,則OB等于( 。
A.$\sqrt{13}$B.$\sqrt{14}$C.2$\sqrt{3}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.用an表示自然數(shù)n的所有因數(shù)中最大的那個奇數(shù),例如:9的因數(shù)有1,3,9,則a9=9;10的因數(shù)有1,2,5,10,則a10=5,記數(shù)列{an}的前n項和為Sn,則S${\;}_{{2}^{2016}-1}$=$\frac{{{4^{2016}}-1}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設全集U={-3,-2,-1,0,1,2,3},集合E={x|x2-3x+2=0,x∈R},F(xiàn)={x|cos$\frac{πx}{2}$=0,x∈R},則(∁UE)∩F=( 。
A.{-3,-1,0,3}B.{-3,-1,3}C.{-3,-1,1,3}D.{-3,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知圓錐的底面半徑為R,高為2R,在它的所有內(nèi)接圓柱中,側面積的最大值是(  )
A.$\frac{1}{4}π{R^2}$B.$\frac{1}{2}π{R^2}$C.πR2D.2πR2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某人經(jīng)營一個抽獎游戲,顧客花費2元錢可購買一次游戲機會,每次游戲中,顧客從裝有1個黑球,3個紅球,6個白球的不透明袋子中依次不放回地摸出3個球(除顏色外其他都相同),根據(jù)摸出的球的顏色情況進行兌獎,顧客獲得一等獎、二等獎、三等獎、四等獎時分別可領取獎金a元、10元、5元、1元,若經(jīng)營者將顧客摸出的3個球的顏色情況分成以下類別:A:1個黑球2個紅球;B:3個紅球;C:恰有1個白球;D:恰有2個白球;E:3個白球.且經(jīng)營者計劃將五種類別按照發(fā)生機會從小到大的順序分別對應中一等獎、中二等獎、中三等獎、中四等獎、不中獎五個層次.
(1)請寫出一至四等獎分別對應的類別(寫出字母即可);
(2)若經(jīng)營者不打算在這個游戲的經(jīng)營中虧本,求a的最大值;
(3)若a=50,當顧客摸出的第一個球是紅球時,求他領取的獎金的平均值.

查看答案和解析>>

同步練習冊答案