【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的值域;
(2)如果對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1);(2) .
【解析】
(1)利用配方法化簡函數(shù),根據(jù)函數(shù)的定義域,換元得到t=∈[0,2],由二次函數(shù)的性質(zhì),即可求出函數(shù)的值域;(2)先利用對(duì)數(shù)運(yùn)算化簡不等式,換元,再通過分離參數(shù)法,轉(zhuǎn)化為最值問題,利用基本不等式求出最值,即可求出實(shí)數(shù)的取值范圍.
(1)h(x)=(4-2)·=-2(-1)2+2,
因?yàn)?/span>x∈[1,4],所以t=∈[0,2],,
故函數(shù)h(x)的值域?yàn)閇0,2].
(2)由f(x2)·f()>k·g(x),
得(3-4)(3-)>k·,
令,因?yàn)?/span>x∈[1,4],所以t=∈[0,2],
所以(3-4t)(3-t)>k·t對(duì)一切t∈[0,2]恒成立,
①當(dāng)t=0時(shí),k∈R;
②當(dāng)t∈(0,2]時(shí),恒成立,
即,
因?yàn)?/span>,當(dāng)且僅當(dāng),即時(shí)取等號(hào),
所以的最小值為-3.所以k<-3.
綜上,實(shí)數(shù)k的取值范圍為(-∞,-3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)a=2時(shí),求函數(shù)g(x)的零點(diǎn);
(2)若函數(shù)g(x)有四個(gè)零點(diǎn),求a的取值范圍;
(3)在(2)的條件下,記g(x)的四個(gè)零點(diǎn)分別為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿市場銷售價(jià)與上市時(shí)間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系用圖(2)的拋物線段表示.
(1)寫出圖(1)表示的市場售價(jià)與時(shí)間的函數(shù)關(guān)系式寫出圖(2)表示的種植成本與時(shí)間的函數(shù)關(guān)系式
(2)認(rèn)定市場售價(jià)減去種植成本為純收益,問何時(shí)上市的西紅柿收益最大?(注:市場售價(jià)和種植成本的單位:元/kg,時(shí)間單位:天.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知指數(shù)函數(shù)滿足.又定義域?yàn)閷?shí)數(shù)集R的函數(shù) 是奇函數(shù).
①確定的解析式;
②求的值;
③若對(duì)任意的R,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是函數(shù)的零點(diǎn),.
(1)求實(shí)數(shù)的值;
(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(3)若方程有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次體能測試中,某研究院對(duì)該地區(qū)甲、乙兩學(xué)校做抽樣調(diào)查,所得學(xué)生的測試成績?nèi)缦卤硭荆?/span>
(1)將甲、乙兩學(xué)校學(xué)生的成績整理在所給的莖葉圖中,并分別計(jì)算其平均數(shù);
(2)若在乙學(xué)校被抽取的10名學(xué)生中任選3人檢測肺活量,求被抽到的3人中,至少2人成績超過80分的概率;
(3)以甲學(xué)校的體能測試情況估計(jì)該地區(qū)所有學(xué)生的體能情況,則若從該地區(qū)隨機(jī)抽取4名學(xué)生,記測試成績?cè)?/span>80分以上(含80分)的人數(shù)為,求的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的左,右焦點(diǎn)分別為,若雙曲線上存在點(diǎn),使,則該雙曲線的離心率范圍為( )
A. (1,1) B. (1,1) C. (1,1] D. (1,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),若,則稱為的“不動(dòng)點(diǎn)”;若,則稱為的“穩(wěn)定點(diǎn)”.函數(shù)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為和,即,.
()設(shè)函數(shù),求集合和.
()求證:.
()設(shè)函數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),其公差為2,a2a4=4a3+1.
(1)求{an}的通項(xiàng)公式;
(2)求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com