5.設(shè)函數(shù)f(x)=丨2x+l丨+丨2x-a丨+a,x∈R.
(1)當(dāng)a=3時(shí),求不等式f(x)>7的解集;
(2)對(duì)任意x∈R恒有f(x)>3,求實(shí)數(shù)a的取值范圍.

分析 (1)當(dāng)a=3時(shí),把不等式轉(zhuǎn)化為與之等價(jià)的三個(gè)不等式組,求得每個(gè)不等式組的解集,再取并集,即得所求.
(2)由題意可得丨2x+l丨+丨2x-a丨+a>3的解集為R,由絕對(duì)值三角不等式可得丨2x+l丨+丨2x-a丨+a≥丨2x+l-2x+a丨+a=|a+1|+a,故有|a+1|+a>3,從而求得a的范圍.

解答 解:(1)當(dāng)a=3時(shí),函數(shù)f(x)=丨2x+l丨+丨2x-3丨+3,
由f(x)>7,可得 $\left\{\begin{array}{l}{x<-\frac{1}{2}}\\{-2x-1-2x+3+3>7}\end{array}\right.$①,或 $\left\{\begin{array}{l}{-\frac{1}{2}≤x≤\frac{3}{2}}\\{2x+1-2x+3+3>7}\end{array}\right.$②,
或$\left\{\begin{array}{l}{x>\frac{3}{2}}\\{2x+1+2x-3+3>7}\end{array}\right.$③.
解①求得x<-$\frac{1}{2}$,解②求得x∈∅,解③求得x>$\frac{3}{2}$,
∴不等式f(x)>7的解集{x|x<-$\frac{1}{2}$或x>$\frac{3}{2}$}.
(2)若關(guān)于x的不等式f(x)>3的解集是R,
即丨2x+l丨+丨2x-a丨+a>3的解集為R.
而丨2x+l丨+丨2x-a丨+a≥丨2x+l-2x+a丨+a=|a+1|+a,
故有|a+1|+a>3,
∴$\left\{\begin{array}{l}{a+1≥0}\\{2a+1>3}\end{array}\right.$或$\left\{\begin{array}{l}{a+1<0}\\{-a-1+a>3}\end{array}\right.$
即a>1,
故a的范圍為(1,+∞).

點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,絕對(duì)值三角不等式,體現(xiàn)了等價(jià)轉(zhuǎn)化、分類(lèi)討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在△ABC中,AB=2,AC=3,∠BAC=60°,D為BC邊上的點(diǎn)且2BD=DC,則|AD|=( 。
A.2B.$\frac{5}{3}$C.$\frac{{\sqrt{37}}}{3}$D.$\frac{{\sqrt{35}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知F(1,0),過(guò)點(diǎn)A(-1,t)作y軸的垂線,與線段AF的垂直平方分線交于點(diǎn)M,點(diǎn)M的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)自直線y=2x+3上的動(dòng)點(diǎn)N作曲線E的兩條切線,兩切點(diǎn)分別為P,Q,求證:直線PQ經(jīng)過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)的定義域?yàn)閇0,4],求函數(shù)y=f(x+3)+f(x2)的定義域?yàn)椋ā 。?table class="qanwser">A.[-2,-1]B.[1,2]C.[-2,1]D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且有Sn=2an-1.?dāng)?shù)列{bn}滿(mǎn)足bn=an+$\frac{1}{4{n}^{2}-1}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在三棱柱ABC-A1B1C1中,四邊形AA1C1C是邊長(zhǎng)為4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求二面角C-A1B1-C1的大;
(Ⅲ)若點(diǎn)D是線段BC的中點(diǎn),請(qǐng)問(wèn)在線段AB1上是否存在點(diǎn)E,使得DE∥面AA1C1C?若存在,請(qǐng)說(shuō)明點(diǎn)E的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=|x-2|,g(x)=m|x|-2,(m∈R).
(1)解關(guān)于x的不等式f(x)>x+3;
(2)若對(duì)于任意x∈R,有f(x)-g(x)≥0,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知直線l的方程為2x+(1+m)y+2m=0,m∈R,點(diǎn)P的坐標(biāo)為(-1,0).
(1)求證:直線l恒過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo);
(2)求點(diǎn)P到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.過(guò)點(diǎn)M(-2,4)作圓C:(x-2)2+(y-1)2=25的切線l,又直線l1:ax+3y+2a=0與直線l平行,則直線l與l1之間的距離為2.4.

查看答案和解析>>

同步練習(xí)冊(cè)答案