有兩個(gè)命題:p:不等式2x-x2<m<(
1
3
x+4對(duì)一切實(shí)數(shù)x恒成立;q:f(x)=-(7-2m)x是R上的減函數(shù),如果p且q為真命題,則實(shí)數(shù)m的取值范圍是
 
考點(diǎn):函數(shù)恒成立問題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:將兩個(gè)命題的條件轉(zhuǎn)化為不等式,由p且q為真命題,取兩個(gè)范圍的交集,即可確定m的取值范圍.
解答: 解:∵2x-x2=-(x-1)2+1≤1,
1
3
x+4>4,
∴不等式2x-x2<m<(
1
3
x+4對(duì)一切實(shí)數(shù)x恒成立,
等價(jià)于1<m≤4,
又∵f(x)=-(7-2m)x是R上的減函數(shù)等價(jià)于
-(7-2m)<0,即m<
7
2

∴p且q為真命題等價(jià)于,
1<m≤4
m<
7
2

1<m<
7
2

即實(shí)數(shù)m的取值范圍是(1,
7
2
),
故答案為(1,
7
2
).
點(diǎn)評(píng):本題考查一次函數(shù),二次函數(shù)以及指數(shù)函數(shù)的性質(zhì)的靈活應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校為了選拔學(xué)生參加“XX市中學(xué)生知識(shí)競(jìng)賽”,先在本校進(jìn)行選拔測(cè)試(滿分150分),若該校有100名學(xué)生參加選拔測(cè)試,并根據(jù)選拔測(cè)試成績(jī)作出如圖所示的頻率分布直方圖.
(Ⅰ)根據(jù)頻率分布直方圖,估算這100名學(xué)生參加選拔測(cè)試的平均成績(jī);
(Ⅱ)該校推薦選拔測(cè)試成績(jī)?cè)?10以上的學(xué)生代表學(xué)校參加市知識(shí)競(jìng)賽,為了了解情況,在該校推薦參加市知識(shí)競(jìng)賽的學(xué)生中隨機(jī)抽取2人,求選取的兩人的選拔成績(jī)?cè)陬l率分布直方圖中處于不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把6個(gè)不同的小球放在編號(hào)為a,b,c的三個(gè)盒子里,要求每個(gè)盒子都不空,則共有
 
種不同的放法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)B是半徑為4的圓O內(nèi)一定點(diǎn),BO=2,動(dòng)點(diǎn)A在圓O上,當(dāng)∠BAO最大時(shí),
AB
AO
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)a,b滿足a2+b2≤1,則關(guān)于x的方程x2-ax+
3
4
b2
=0有實(shí)數(shù)根的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x),g(x)均為定義在實(shí)數(shù)集上的增函數(shù),以下函數(shù)為增函數(shù)的是
 

①f(x)+g(x) ②f(x)-g(x) ③f(x)g(x) ④kf(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于集合A={a1,a2…an} (n∈N*,n≥3),定義集合S={x|x=ai+aj,1≤i<j≤n},記集合S中的元素個(gè)數(shù)為S(A).
(1)若集合A={1,2,3,4},則S(A)=
 

(2)若a1,a2,…,an是公差大于零的等差數(shù)列,則S(A)=
 
(用含n的代數(shù)式表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的角A、B、C所對(duì)的邊分別為a、b、c,設(shè)向量
p
=(a,b),
q
=(sinB,sinA),
n
=(b-2,a-2).
(Ⅰ)若
p
q
,求證:△ABC是等腰三角形;
(Ⅱ)若
p
n
,邊長(zhǎng)c=2,∠C=
π
3
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(3,1),
b
=(1,3),
c
=(k,7),若(
a
-
c
)∥
b
,則k=( 。
A、1B、3C、5D、7

查看答案和解析>>

同步練習(xí)冊(cè)答案