11.若集合E={x|-1<x<9,x∈N},F(xiàn)={y|y=x-5,x∈E},則E∩F=( 。
A.{1,2,3}B.C.{0,1,2,3}D.{0,1,2,3,4}

分析 先分別求出集合E,F(xiàn),由此能求出E∩F.

解答 解:∵集合E={x|-1<x<9,x∈N}={0,1,2,3,4,5,6,7,8},
F={y|y=x-5,x∈E}={-5,-4,-3,-2,-1,0,1,2,3},
∴E∩F={0,1,2,3}.
故選:C.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.給出下列命題:
(1)函數(shù)y=sin|x|不是周期函數(shù);
(2)函數(shù)y=tanx在定義域內(nèi)為增函數(shù);
(3)函數(shù)y=|cos2x+$\frac{1}{2}$|的最小正周期為$\frac{π}{2}$;
(4)函數(shù)y=4sin(2x+$\frac{π}{3}$),x∈R的一條對(duì)稱軸為$x=\frac{π}{12}$.
其中正確命題的序號(hào)是(1)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)a,b是兩條不同的直線,α是平面,且a?α,“a∥b”是“b∥α”的(  )
A.充分不必要條件B.必要不從分條件
C.充分不要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距為2,離心率$e=\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若P是該橢圓上的一個(gè)動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是橢圓C的兩個(gè)焦點(diǎn),求$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值和最小值;
(3)設(shè)過(guò)定點(diǎn)M(0,2)且斜率為k的直線l與橢圓交于不同的兩點(diǎn)A、B,在y軸上是否存在定點(diǎn)E使$\overrightarrow{AE}•\overrightarrow{BE}$為定值?若存在,求出E點(diǎn)坐標(biāo)和這個(gè)定值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知sin2α=3sin2β,則$\frac{{tan({α-β})}}{{tan({α+β})}}$=(  )
A.2B.$\frac{3}{4}$C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下面四個(gè)命題:
①將y=f(2x)的圖象向右平移1個(gè)單位后得到y(tǒng)=f(2x-1)的圖象;
②若{an}前n項(xiàng)和Sn=3•2n+1-6,則{an}是等比數(shù)列;
③若A是B的充分不必要條件,則¬A是¬B的必要不充分條件;
④底面是正三角形,其余各側(cè)面是等腰三角形的棱錐是正三棱錐.
則正確命題個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某單位需制作一種長(zhǎng)方體包裝盒,有兩個(gè)要求:①容積為$\frac{512}{3}c{m^3}$.②包裝盒底面長(zhǎng)方形的長(zhǎng)是寬的2倍.請(qǐng)你設(shè)計(jì)包裝盒的長(zhǎng)、寬、高,使包裝盒用料最省,并求出最小用料面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知,a=log0.30.2,b=log32,c=log0.23,則a,b,c的大小關(guān)系為( 。
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=lnx+$\frac{a}{x+1}+b$(a,b∈R)
(1)當(dāng)a=4,b=-2時(shí),求函數(shù)f(x)在x=1處的切線方程
(2)在(1)的前提下,若函數(shù)f(x)的圖象恒不在曲線y=$\frac{k}{x+1}$(x≥1)的下方,求k的取值范圍
(3)若f(x)在定義域上是單調(diào)函數(shù),且零點(diǎn)為1,求a(b+1)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案