15.如圖,一輛汽車(chē)在一條水平的公路上向正西行駛,到A處測(cè)得公路北側(cè)一山頂D在西偏北30°(即∠BAC=30°)的方向上;行駛600m后到達(dá)B處,測(cè)得此山頂在西偏北75°(即∠CBE=75°)的方向上,且仰角為30°.則此山的高度CD=(  )
A.$100\sqrt{6}$mB.$100\sqrt{3}$mC.$300\sqrt{6}$mD.$150\sqrt{3}$m

分析 在△ABC中利用正弦定理求出BC,再在Rt△BCD中求出CD.

解答 解:在△ABC中,AB=600,∠BAC=30°,∠ACB=∠CBE-∠BAC=45°,
由正弦定理得$\frac{AB}{sin∠ACB}=\frac{BC}{sin∠BAC}$,即$\frac{600}{\frac{\sqrt{2}}{2}}=\frac{BC}{\frac{1}{2}}$,
解得BC=300$\sqrt{2}$,
在Rt△BCD中,∵tan30°=$\frac{CD}{BC}$=$\frac{\sqrt{3}}{3}$,
∴CD=$\frac{\sqrt{3}}{3}$BC=100$\sqrt{6}$.
故選A.

點(diǎn)評(píng) 本題考查了正弦定理,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知圓C的方程為x2+y2-4x-6y+10=0,則過(guò)點(diǎn)(1,2)的最短弦的長(zhǎng)度為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知直線y=kx+1與拋物線y=x2交于A,B兩點(diǎn).O為坐標(biāo)原點(diǎn)
(1)求證:OA⊥OB;
(2)若△AOB的面積為2,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如圖,圓O:x2+y2=16內(nèi)的正弦曲線y=sinx,x∈[-π,π]與x軸圍成的區(qū)域記為M(圖中陰影部分),隨機(jī)向圓O內(nèi)投一個(gè)點(diǎn)P,記A表示事件“點(diǎn)P落在一象限”,B表示事件“點(diǎn)P落在區(qū)域M內(nèi)”,則概率P(B|A)=$\frac{1}{2π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.直線l1,l2分別是函數(shù)f(x)=sinx,x∈[0,π]圖象上點(diǎn)P1,P2處的切線,l1,l2垂直相交于點(diǎn)P,且l1,l2分別與y軸相交于點(diǎn)A,B,則△PAB的面積為$\frac{{π}^{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知直線l經(jīng)過(guò)直線l1:2x-y-1=0與直線l2:x+2y-3=0的交點(diǎn)P,且與直線l3:x-y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓C:(x-a)2+y2=8相交于P,Q兩點(diǎn),且$|PQ|=2\sqrt{6}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1與x軸交于A、B兩點(diǎn),過(guò)橢圓上一點(diǎn)P(x0,y0)(P不與A、B重合)的切線l的方程為$\frac{{x}_{0}x}{9}$+$\frac{{y}_{0}y}{4}$=1,過(guò)點(diǎn)A、B且垂直于x軸的垂線分別與l交于C、D兩點(diǎn),設(shè)CB、AD交于點(diǎn)Q,則點(diǎn)Q的軌跡方程為$\frac{{x}^{2}}{9}$+y2=1(x≠±3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.若對(duì)任意實(shí)數(shù)x,不等式|x-a|+|2x-1|≥2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知曲線C滿足方程$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{2t-1}}\end{array}\right.$(t為參數(shù)),則曲線C上點(diǎn)的橫坐標(biāo)的取值范圍是( 。
A.RB.[0,+∞)C.[1,+∞)D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案