分析 (1)分A=∅和A≠∅的情況,然后根據(jù)所給“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的定義來證明.
(2)由f(x)=x2+ax+b,A={-1,3},求出a,b,進(jìn)而由f(f(x))=x構(gòu)造方程,解方程可得B.
解答 證明:(1)?x∈A,即f(x)=x.
則有f[f(x)]=f(x)=x,x∈B
∴A⊆B
(2)∵f(x)=x2+ax+b,若A={-1,3},
則方程x2+ax+b=x的兩根是-1,3,
即方程x2+(a-1)x+b=0的兩根是-1,3,
即-1+3=-(a-1),-1×3=b,
解得a=-1,b=-3,
故f(x)=x2-x-3,
若f(f(x))=x,
即(x2-x-3)2-(x2-x-3)-3=x,
即x4-2x3-6x2+6x+9=0,
即(x+1)(x-3)(x2-3)=0
解得:B={-1,3,-$\sqrt{3}$,$\sqrt{3}$},
點(diǎn)評(píng) 本題考查對(duì)新概念的理解和運(yùn)用的能力,同時(shí)考查了集合間的關(guān)系和方程根的相關(guān)知識(shí),解題過程中體現(xiàn)了分類討論的數(shù)學(xué)思想,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{5}$,$\frac{2}{5}$) | B. | (-$\frac{1}{5}$,-$\frac{2}{5}$) | C. | (-$\frac{1}{5}$,$\frac{2}{5}$) | D. | ($\frac{1}{5}$,-$\frac{2}{5}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A∪B=R | B. | A∩B=∅ | C. | B⊆A | D. | A⊆B |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com