2.已知i為虛數(shù)單位,則復(fù)數(shù)$\frac{{i}^{2015}}{i-2}$在復(fù)平面內(nèi)對應(yīng)的點的坐標為(  )
A.($\frac{1}{5}$,$\frac{2}{5}$)B.(-$\frac{1}{5}$,-$\frac{2}{5}$)C.(-$\frac{1}{5}$,$\frac{2}{5}$)D.($\frac{1}{5}$,-$\frac{2}{5}$)

分析 利用復(fù)數(shù)的冪運算,復(fù)數(shù)的除法的運算法則化簡求解即可.

解答 解:復(fù)數(shù)$\frac{{i}^{2015}}{i-2}$=$\frac{-i}{i-2}$=$\frac{i(2+i)}{(2-i)(2+i)}$=$\frac{-1+2i}{5}$,復(fù)數(shù)對應(yīng)點的坐標(-$\frac{1}{5}$,$\frac{2}{5}$).
故選:C.

點評 本題考查復(fù)數(shù)的基本運算,復(fù)數(shù)單位的冪運算,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.閱讀如下程序框圖,如果輸出i=4,那么空白的判斷框中應(yīng)填入的條件是( 。
A.S<8?B.S<12?C.S<14?D.S<16?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)的定義域為R,周期為4,若f(x-1)為奇函數(shù),且f(1)=1,則f(7)+f(9)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},則集合A∩B中的子集個數(shù)為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知z為純虛數(shù),$\frac{z+2}{1-i}$是實數(shù),則復(fù)數(shù)z=( 。
A.2iB.iC.-2iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.3位同學(xué)報名參加兩個課外活動小組,每位同學(xué)限報其中的一個小組,則不同的報名方法共有8種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,某隧道設(shè)計為雙向四車道,車道總寬20m,要求通行車輛限高5m,隧道全長2.5km,隧道的兩側(cè)是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個橢圓.

(1)若最大拱高h為6m,則隧道設(shè)計的拱寬l是多少?
(2)若要使隧道上方半橢圓部分的土方工程 量最小,則應(yīng)如何設(shè)計拱高h和拱寬l?(已知:橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的面積公式為S=πab,柱體體積為底面積乘以高.)
(3)為了使隧道內(nèi)部美觀,要求在拱線上找兩個點M、N,使它們所在位置的高度恰好是限高5m,現(xiàn)以M、N以及橢圓的左、右頂點為支點,用合金鋼板把隧道拱線部分連接封閉,形成一個梯形,若l=30m,梯形兩腰所在側(cè)面單位面積的鋼板造價是梯形頂部單位面積鋼板造價的$\sqrt{2}$倍,試確定M、N的位置以及h的值,使總造價最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.2014年12月28日開始,北京市地鐵按照里程分段計價.具體如下表:
乘坐地鐵方案
(不含機場線)
6公里(含)內(nèi)3元;
6公里至12公里(含)內(nèi)4元;
12公里至22公里(含)內(nèi)5元;
22公里至32公里(含)內(nèi)6元;
32公里以上部分,每增加l元可乘坐20公里(含).
已知在北京地鐵四號線上,任意一站到陶然亭站的票價不超過5元,現(xiàn)從那些只乘坐四號線地鐵,且在陶然亭站出站的乘客中隨機選出120人,他們乘坐地鐵的票價統(tǒng)計如圖所示.
(Ⅰ)如果從那些只乘坐四號線地鐵,且在陶然亭站出站的乘客中任選1人,試估計此人乘坐地鐵的票價大于3元的概率為$\frac{1}{2}$;
(Ⅱ)從那些只乘坐四號線地鐵,且在陶然亭站出站的乘客中隨機選2人,記X為這2人乘坐地鐵的票價和,根據(jù)統(tǒng)計圖,并以頻率作為概率,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.對于函數(shù)f(x),若f(x)=x,則稱x為f(x)的“不動點”,若f(f(x))=x,則稱x為f(x)的“穩(wěn)定點”.函數(shù)f(x)的“不動點”和“穩(wěn)定點”的集合分別記為A和B,即A={x|f(x)=x},B={x|f(f(x))=x}
(1)證明:A⊆B;
(2)設(shè)f(x)=x2+ax+b,若A={-1,3},求集合B.

查看答案和解析>>

同步練習冊答案