若Z是純虛數(shù),且|z|=2,則Z=
 
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,復(fù)數(shù)求模
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:設(shè)出復(fù)數(shù)z,利用復(fù)數(shù)的模直接求出復(fù)數(shù)z即可.
解答: 解:∵Z是純虛數(shù),
∴令z=bi(b≠0)
∵|z|=2,
∴|bi|=2,
∴b=±2.
∴z=±2i.
故答案為:±2i.
點(diǎn)評:本題考查復(fù)數(shù)的基本概念,復(fù)數(shù)的模的應(yīng)用,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體AC1的棱長為1,過點(diǎn)A作平面A1BD的垂線,垂足為H.則以下命題中,錯(cuò)誤的命題是( 。
A、點(diǎn)H是△A1BD的垂心
B、AH垂直平面CB1D1
C、直線AH和BB1所成角為45°
D、AH的延長線經(jīng)過點(diǎn)C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)調(diào)查統(tǒng)計(jì),某種型號的汽車在勻速行駛中,每小時(shí)的耗油量y(升)關(guān)于行駛速度x(千米/時(shí))的函數(shù)可表示為y=
1
120000
x3-
1
50
x+
18
5
(0<x≤100).已知甲、乙兩地相距100千米,在勻速行駛速度不超過100千米/時(shí)的條件下,該種型號的汽車從甲地到乙地的耗油量記為f(x)(升).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性,當(dāng)x為多少時(shí),耗油量f(x)為最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下面四個(gè)判斷:
①命題:“設(shè)a、b∈R,若a+b≠6,則a≠3或b≠3”是一個(gè)假命題
②若“p或q”為真命題,則p、q均為真命題
③命題“?a、b∈R,a2+b2≥2(a-b-1)”的否定是:“?a、b∈R,a2+b2≤2(a-b-1)”
④若函數(shù)f(x)=ln(a+
2
x+1
)的圖象關(guān)于原點(diǎn)對稱,則a=3
其中錯(cuò)誤的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)的定義域?yàn)椋?∞,-1)∪(1,+∞),其圖象上任一點(diǎn)P(x,y)滿足x2-y2=1,則給出以下四個(gè)命題:
①函數(shù)y=f(x)一定是偶函數(shù);
②函數(shù)y=f(x)可能是奇函數(shù);
③函數(shù)y=f(x)在(1,+∞)單調(diào)遞增;
④若y=f(x)是偶函數(shù),其值域?yàn)椋?,+∞)
其中正確的序號為
 
.(把所有正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ABCD-A1B1C1D1是邊長為3的正方體,點(diǎn)P、Q、R分別是棱AB、AD、AA1上的點(diǎn),AP=AQ=AR=1,則四面體C1PQR的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某高中十佳歌手比賽上某一位選手得分的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的方差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|1<x<3},B={x|x≤2},則A∩(∁RB)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下命題:①y=x+
1
x
≥2,②若a>0,b>0且a+b=2,則ab≤1,③
x
+
4
x
的最小值為4,④a∈R,a2+1>2a.其中正確的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊答案