14.已知f(3x+2)=9x2+3x-1,求f(x)( 。
A.f(x)=3x2-x-1B.f(x)=81x2+127x+53C.f(x)=x2-3x+1D.f(x)=6x2+2x+1

分析 設(shè)t=3x+2求出x=$\frac{t-2}{3}$,代入解析式化簡后即可求出f(x)的解析式.

解答 解:設(shè)t=3x+2,則x=$\frac{t-2}{3}$,代入解析式得,
∴f(t)=9$(\frac{t-2}{3})^{2}$+3•$\frac{t-2}{3}$-1=t2-3t+1,
∴f(x)=x2-3x+1,
故選:C.

點評 本題考查了函數(shù)解析式的求法:換元法,注意函數(shù)解析式與自變量的符號無關(guān),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=$\sqrt{2}$,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD的中點.
(I)求證:平面PAB⊥平面PAD;
(Ⅱ)求二面角B-PC-D平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.(1-x)5•(1+x)3的展開式中x3的系數(shù)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在矩形ABCD中,AB=4$\sqrt{5}$,AD=2$\sqrt{5}$,將△ABD沿BD折起,使得點A折起至A′,設(shè)二面角A′-BD-C的大小為θ.
(1)當(dāng)θ=90°時,求A′C的長;
(2)當(dāng)cosθ=$\frac{1}{4}$時,求BC與平面A′BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(-2,4),若$\overrightarrow{a}$∥$\overrightarrow$,則x的值為( 。
A.2B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=axlnx(a≠0),若f′(e)=2,則f(e)的值為( 。
A.$\frac{e}{2}$B.1C.eD.2e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)是定義在R上的奇函數(shù),對任意x∈R都有f(x+4)=f(x)+3f(2),且f(1)=1,則f(2015)+f(2016)的值為( 。
A.-1B.0C.1D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=2sin2x-6sinx+2(x∈R)的最大值和最小值之和是( 。
A.8B.$\frac{15}{2}$C.-2D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=cos2(x+$\frac{π}{4}$)-cos2(x-$\frac{π}{4}$)是(  )
A.周期為2π的偶函數(shù)B.周期為2π的奇函數(shù)
C.周期為π的偶函數(shù)D.周期為π的奇函數(shù)

查看答案和解析>>

同步練習(xí)冊答案