17.過(guò)圓C:x2+y2=10x內(nèi)一點(diǎn)(5,3)有k條弦的長(zhǎng)度組成等差數(shù)列,且最小弦長(zhǎng)為數(shù)列的首項(xiàng)a1,最大弦長(zhǎng)為數(shù)列的末項(xiàng)ak,若公差d∈[$\frac{1}{3}}\right.$,$\left.{\frac{1}{2}$],則k取值不可能是( 。
A.5B.6C.7D.8

分析 根據(jù)題意可知,最短弦為垂直O(jiān)A的弦,a1=8,最長(zhǎng)弦為直徑:aK=10,由等差數(shù)列的性質(zhì)可以求出公差d的取值范圍.

解答 解:設(shè)A(5,3),圓心O(5,0),
最短弦為垂直O(jiān)A的弦,a1=8,最長(zhǎng)弦為直徑:aK=10,
公差d=$\frac{2}{k-1}$,
∴$\frac{1}{3}≤\frac{2}{k-1}≤\frac{1}{2}$,
∴5≤k≤7
故選:D.

點(diǎn)評(píng) 本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要注意公式的靈活選用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)向量$\overrightarrow{α}$=(1,cos2θ-sin2θ),$\overrightarrow$=(2,1),$\overrightarrow{c}$=($4cos(\frac{π}{2}-θ)$,1),$\overrightarrowzczldln$=($\frac{1}{2}cos(\frac{3π}{2}+θ),1$)其中$θ∈(0,\frac{π}{4})$.
(1)求$\overrightarrow{α}•\overrightarrow-\overrightarrow{c}•\overrightarrowqdpmk1v$的取值范圍.
(2)若函數(shù)f(x)=|x-1|,比較f($\overrightarrow{α}•\overrightarrow$)與f($\overrightarrow{c}•\overrightarrowi2zsph0$)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=x2+2x-3,x∈[0,2],則函數(shù)f(x)的值域?yàn)閇-3,5]..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.原命題為:“若x=1,則x2=1”.
(1)寫出原命題的逆命題、否命題和逆否命題,并判斷這四個(gè)命題的真假性;
(2)寫出原命題的否定,并判斷其真假性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若-1<x<1,則y=$\frac{x}{x-1}$+x的最大值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.將參加夏令營(yíng)的600名學(xué)生編號(hào)為:001,002,…,600,采用系統(tǒng)抽樣方法抽取一個(gè)容量為50的樣本,且隨機(jī)抽得的號(hào)碼為003.這600名學(xué)生分住在三個(gè)營(yíng)區(qū),從001到240在第一營(yíng)區(qū),從241到496為第二個(gè)營(yíng)區(qū),從497到600為第三營(yíng)區(qū),則第二營(yíng)區(qū)被抽中的人數(shù)為22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知等差數(shù)列{an}中,前n項(xiàng)和為Sn,若a3+a9=6,則S11=(  )
A.12B.33C.66D.99

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{x+1}{x-1}$(x≠1)
(1)證明f(x)在(1,+∞)上是減函數(shù);
(2)令g(x)=lnf(x),判斷g(x)=lnf(x)的奇偶性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.計(jì)算:
(1)log327+lg25+lg4+7${\;}^{lo{g}_{7}2}$+(-9.8)0
(2)($\frac{8}{27}$)${\;}^{-\frac{2}{3}}$-$\root{3}{π}$×π${\;}^{\frac{2}{3}}$+$\sqrt{(2-π)^{2}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案