12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x,x≥1}\\{\frac{1}{x},0<x<1}\end{array}\right.$,g(x)=af(x)-|x-2|,a∈R.
(Ⅰ)當(dāng)a=0時(shí),若g(x)≤|x-1|+b對(duì)任意x∈(0,+∞)恒成立,求實(shí)數(shù)b的取值范圍;
(Ⅱ)當(dāng)a=1時(shí),求函數(shù)y=g(x)的最小值.

分析 (Ⅰ)求出當(dāng)a=0時(shí)的g(x)的解析式,運(yùn)用絕對(duì)值不等式的性質(zhì)可得-b不大于1,即可得到b的范圍;
(Ⅱ)求出當(dāng)a=1時(shí)的g(x)的解析式,再求各段的最值,結(jié)合基本不等式和函數(shù)的單調(diào)性,即可得到.

解答 解:(Ⅰ)當(dāng)a=0時(shí),g(x)=-|x-2|(x>0),
g(x)≤|x-1|+b?-b≤|x-1|+|x-2|,
由于|x-1|+|x-2|≥|(x-1)-(x-2)|=1,當(dāng)且僅當(dāng)1≤x≤2時(shí)等號(hào)成立,
即有-b≤1,解得b≥-1.
則實(shí)數(shù)b的取值范圍是[-1,+∞);                                       
(Ⅱ)當(dāng)a=1時(shí),g(x)=$\left\{\begin{array}{l}{\frac{1}{x}+x-2,0<x<1}\\{2x-2,1≤x≤2}\\{2,x>2}\end{array}\right.$,
當(dāng)0<x<1時(shí),g(x)=x+$\frac{1}{x}$-2>2$\sqrt{x•\frac{1}{x}}$-2=0;                  
當(dāng)x≥1時(shí),g(x)≥0,當(dāng)且僅當(dāng)x=1等號(hào)成立;                     
故當(dāng)x=1時(shí),函數(shù)y=g(x)取得最小值0.

點(diǎn)評(píng) 本題考查分段函數(shù)的運(yùn)用,主要考查絕對(duì)值不等式的性質(zhì)和基本不等式的運(yùn)用,同時(shí)考查分段函數(shù)的最值的求法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).當(dāng)x∈[-3,-1)時(shí),f(x)=-(x+2)2,當(dāng)x∈[-1,3)時(shí),f(x)=x,則f(1)+f(2)+f(3)+…+f(2015)=( 。
A.336B.355C.1676D.2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知樣本M的數(shù)據(jù)如下:80,82,82,84,84,84,86,86,86,86,若將樣本M的數(shù)據(jù)分別加上4后得到樣本N的數(shù)據(jù),那么兩樣本M,N的數(shù)字特征對(duì)應(yīng)相同的是( 。
A.平均數(shù)B.眾數(shù)C.標(biāo)準(zhǔn)差D.中位數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.拋物線y2+4x=0上的點(diǎn)P到直線x=2的距離等于4,則P到焦點(diǎn)F的距離|PF|=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.圓心在原點(diǎn)且與直線x+y-4=0相切的圓的方程為x2+y2=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在極坐標(biāo)系中,已知點(diǎn)$A(4,1),B(3,1+\frac{π}{2})$,則線段AB的長度是( 。
A.1B.$\sqrt{1+\frac{π^2}{4}}$C.7D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某校高三年級(jí)研究性學(xué)習(xí)小組共6人,計(jì)劃同時(shí)參觀科普展,該科普展共有甲,乙,丙三個(gè)展廳,6人各自隨機(jī)地確定參觀順序,在每個(gè)展廳參觀一小時(shí)后去其他展廳,所有展廳參觀結(jié)束后集合返回,設(shè)事件A為:在參觀的第一小時(shí)時(shí)間內(nèi),甲,乙,丙三個(gè)展廳恰好分別有該小組的2個(gè)人;事件B為:在參觀的第二個(gè)小時(shí)時(shí)間內(nèi),該小組在甲展廳人數(shù)恰好為2人.
(Ⅰ)求P(A)及P(B|A);
(Ⅱ)設(shè)在參觀的第三個(gè)小時(shí)時(shí)間內(nèi),該小組在甲展廳的人數(shù)為ξ,則在事件A發(fā)生的前提下,求ξ的概率分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=$\frac{1}{2}$ax2-x-ln(1+x),其中a>0,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點(diǎn)A,B,C,D均在球O的球面上,AB=BC=1,AC=$\sqrt{3}$,若三棱錐D-ABC體積的最大值是$\frac{1}{4}$,則球O的表面積為$\frac{16}{3}$π.

查看答案和解析>>

同步練習(xí)冊(cè)答案