【題目】已知雙曲線的離心率為,過點A(0,-b)和B(a,0)的直線與原點的距離為.
(1)求雙曲線C的方程;
(2)直線y=kx+m(k≠0, m≠0)與該雙曲線C交于不同的兩點C,D,且C,D兩點都在以點A為圓心的同一圓上,求m的取值范圍.
【答案】(1)(2)
【解析】分析:(1)利用橢圓的離心率e=,過點A(0,-b)和B(a,0)的直線與原點的距離為,建立方程,求得幾何量,即可求得雙曲線方程;
(2)直線方程與雙曲線方程聯(lián)立,利用C、D兩點都在以A為圓心的同一圓上,可設(shè)CD的中點為P,則AP⊥CD,結(jié)合直線垂直,即可求得m的取值范圍.
詳解:(1)-y2=1.
(2)消去y得,(1-3k2)x2-6kmx-3m2-3=0,
由已知,1-3k2≠0且Δ=12(m2+1-3k2)>0m2+1>3k2.①
設(shè)C(x1,y1),D(x2,y2),CD的中點P(x0,y0),
則x0==,y0=kx0+m=,
因為AP⊥CD,
所以kAP===-,
整理得3k2=4m+1.②
聯(lián)立①②得m2-4m>0,
所以m<0或m>4,又3k2=4m+1>0,
所以m>-,因此-<m<0或m>4.
故m的取值范圍為∪(4,+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知標準方程下的橢圓的焦點在軸上,且經(jīng)過點,它的一個焦點恰好與拋物線的焦點重合.橢圓的上頂點為,過點的直線交橢圓于兩點,連接、,記直線的斜率分別為.
(1)求橢圓的標準方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C: + =1,直線l: (t為參數(shù))
(1)寫出曲線C的參數(shù)方程,直線l的普通方程.
(2)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(x+ ),x∈R,且f( )= .
(1)求A的值;
(2)若f(θ)+f(﹣θ)= ,θ∈(0, ),求f( ﹣θ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某學(xué)校準備修建一個面積為2400平方米的矩形活動場地(圖中ABCD)的圍欄,按照修建要求,中間用圍墻EF隔開,使得ABEF為矩形,EFCD為正方形,設(shè)米,已知圍墻(包括EF)的修建費用均為每米500元,設(shè)圍墻(包括EF)的修建總費用為y元.
(1)求出y關(guān)于x的函數(shù)解析式及x的取值范圍;
(2)當(dāng)x為何值時,圍墻(包括EF)的修建總費用y最小?并求出y的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知圓經(jīng)過,,,三點,是線段上的動點,,是過點且互相垂直的兩條直線,其中交軸于點,交圓于、兩點.
(1)若,求直線的方程;
(2)若是使恒成立的最小正整數(shù),求三角形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的有______
①平均數(shù)不受少數(shù)幾個極端值的影響,中位數(shù)受樣本中的每一個數(shù)據(jù)影響;
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大
③用樣本的頻率分布估計總體分布的過程中,樣本容量越大,估計越準確.
④向一個圓面內(nèi)隨機地投一個點,如果該點落在圓內(nèi)任意一點都是等可能的,則該隨機試驗的數(shù)學(xué)模型是古典概型.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com