ABCD是邊長為3的正方形,ABEF是矩形,面ABCD垂直于面ABEF,G為EC的中點,求證AC∥面BFG.
考點:直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:由題意,畫出圖形,利用線面平行的判定定理,只要在平面BFG內(nèi)找出一條直線與AC平行即可.
解答: 證明:如圖,
連接AE,交BF與O,則O是AE的中點,又G是EC的中點,
所以AC∥OG,
又AC?平面BFG,OG?平面BFG,
所以AC∥面BFG.
點評:本題考查了線面平行的判定定理的運用;關(guān)鍵是在平面BFG內(nèi)找出與AC平行的直線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知遞增的等差數(shù)列{an}的首項a1=1,且a1、a2、a4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式an ;
(2)設(shè)數(shù)列{cn}對任意n∈N*,都有
c1
2
+
c2
22
+…+
cn
2n
=an+1
,求c1+c2+…+c2015的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程ax3-3x2+1=0正實數(shù)解有且僅有一個,則實數(shù)a的取值范圍是(  )
A、{a|a≤0}
B、{a|a≤0或a=2}
C、{a|a≥0}
D、{a|a≥0或a=-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以下4個命題:
①若p∨q為真命題,則p∧q為真命題;
②若p:?x∈R,x2-3x-2<0,則¬q:?x∈R,x2-3x-2≥0;
③設(shè)a,b∈R,則a>b是(a-1)|a|>(b-1)|b|成立的充分不必要條件;
④若關(guān)于實數(shù)x的不等式|1-2x|+|1+3x|<a|x|無解,則實數(shù)a的取值范圍是(-∞,5].
其中正確命題的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱柱ABC-A1B1C1的底面邊長是2,側(cè)棱長為4,M、N分別是A1B1,CC1中點,則AN與BM所成角的余弦值為( 。
A、
2
3
B、
6
4
C、
7
34
68
D、
5
34
68

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在x使2•(x-a)>1成立.則a的取值范圍是( 。
A、(-∞.+∞)
B、(-2,+∞)
C、(0.+∞)
D、(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c為△ABC的內(nèi)角A,B,C的對邊,且b<a<c,滿足
sinB+sinC
sinA
=
2-cosB-cosC
cosA
,函數(shù)f(x)=sinωx(ω>0)在區(qū)間[0,
π
3
]上單調(diào)遞增,在區(qū)間[
π
3
,
π
2
]上單調(diào)遞減.
(1)證明:b,a,c成等差數(shù)列;
(2)若f(
π
9
)=cosA,且a=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知無窮整數(shù)數(shù)集A={a1,a2,a3,…,an,…}(a1<a2<a3<…<an<…)具有性質(zhì)P:對任意互不相等的正整數(shù)i,j,k,總有ai+|ak-aj|∈A.
(Ⅰ)若{1,21}⊆A且5∉A,判斷13是否屬于A,并說明理由;
(Ⅱ)求證:a1,a2,a3,…,an,…是等差數(shù)列;
(Ⅲ)已知x,y∈N且y>x>0,記 M是滿足{0,x,y}⊆A的數(shù)集A中的一個,且是滿足{0,x,y}⊆A的所有數(shù)集A的子集,求證:x,y互質(zhì)是M=N的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
3
-3
9-x2
-x3)dx的值.

查看答案和解析>>

同步練習(xí)冊答案