16.已知函數(shù)f(x)=$\frac{x+b}{1+{x}^{2}}$是定義在(-1,1)上的奇函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)用單調(diào)性的定義證明函數(shù)f(x)在(-1,1)上是增函數(shù);
(3)解不等式f(2x-1)+f(x)<0.

分析 (1)利用奇函數(shù)的定義,求出b,即可求函數(shù)f(x)的解析式;
(2)根據(jù)單調(diào)性的定義證明函數(shù)f(x)在(-1,1)上是增函數(shù);
(3)f(2x-1)+f(x)<0可化為-1<2x-1<-x<1,即可解不等式 f(2x-1)+f(x)<0.

解答 解:(1)∵函數(shù)f(x)=$\frac{x+b}{1+{x}^{2}}$是定義在(-1,1)上的奇函數(shù),
∴f(0)=0,即b=0,
∴f(x)=$\frac{x}{1+{x}^{2}}$;
(2)設(shè)0<x1<x2<1,△x=x2-x1>0,
則△y=f(x2)-f(x1)=$\frac{{x}_{2}}{1+{{x}_{2}}^{2}}$-$\frac{{x}_{1}}{1+{{x}_{1}}^{2}}$=$\frac{{({x}_{1}-x}_{2})({{{x}_{1}x}_{2}-1)}^{\;}}{(1+{{x}_{1}}^{2})(1+{{x}_{2}}^{2})}$,
∵0≤x1<x2<1,
∴x2-x1>0,1-x1x2>0
∴f(x2)-f(x1)>0
∴f(x)在[0,1)上是增函數(shù),
∵函數(shù)f(x)是定義在(-1,1)上的奇函數(shù),
∴函數(shù)f(x)在(-1,1)上是增函數(shù);
(3)f(2x-1)+f(x)<0可化為-1<2x-1<-x<1,
解得:0<x<$\frac{1}{3}$
∴不等式的解集為{x|0<x<$\frac{1}{3}$}.

點(diǎn)評 本題考查函數(shù)的奇偶性、單調(diào)性,考查解不等式,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)$f(x)=\frac{{2\sqrt{x}}}{x+1}$的最大值為( 。
A.2B.1C.$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四邊形ABCD中,AB=AD=4,BC=6,CD=2,3$\overrightarrow{AB}$•$\overrightarrow{AD}$+4$\overrightarrow{CB}$•$\overrightarrow{CD}$=0.
(1)求四邊形ABCD的面積;
(2)求三角形ABC的外接圓半徑R;
(3)若∠APC=60°,求PA+PC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)y=f(x2),則y″=2f′(x2)+4x2f″(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知M(x0,y0)是橢圓C:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1上的任一點(diǎn),從原點(diǎn)O向圓M:(x-x02+(y-y02=2作兩條切線,分別交橢圓于點(diǎn)P、Q.
(1)若直線OP,OQ的斜率存在,并記為k1,k2,求證:k1k2為定值.
(2)試問OP2+OQ2是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點(diǎn)A(2,3)與點(diǎn)B(6,y)的距離等于4$\sqrt{5}$,則y的值是( 。
A.11或5B.-5或-11C.11D.11或-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知1g12=a,lg18=b,試用a,b表示log23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)$\overrightarrow{a}$≠0,$\overrightarrow$≠0,$\overrightarrow{a}$≠$\overrightarrow$,當(dāng)$\overrightarrow{a}$和$\overrightarrow$滿足條件|$\overrightarrow{a}$|=|$\overrightarrow$|時(shí),使得$\overrightarrow{a}$+$\overrightarrow$平分$\overrightarrow{a}$與$\overrightarrow$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)y=(x+$\sqrt{{x}^{2}+1}$)2,求y′.

查看答案和解析>>

同步練習(xí)冊答案