【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)已知函數(shù)的兩個極值點,若,①證明:;②證明:

【答案】1)情況較多,見詳解,(2)證明見詳解

【解析】

1)求出,然后分,三種情況討論

2)①由即可證明;②用分析法得到要證原命題即證,然后設(shè),利用導(dǎo)數(shù)得到單調(diào)遞減,結(jié)合可得當(dāng),當(dāng),然后即可證明.

1)由已知

①當(dāng)時,,所以,所以函數(shù)上單調(diào)遞增

②當(dāng)時,上有兩不等正實數(shù)根

當(dāng)時,單調(diào)遞增

當(dāng)時,,單調(diào)遞減

當(dāng)時,,單調(diào)遞增

③當(dāng)時,

所以當(dāng)時,,單調(diào)遞減

當(dāng)時,,單調(diào)遞增

2)①的定義域為,有兩個極值點

上有兩個不等正根

由(1)中可得

因為,所以,所以

②原命題即證明當(dāng),成立

即證,即證

即證,即證

設(shè)

當(dāng),單調(diào)遞減

因為,所以當(dāng),當(dāng)

又因為,當(dāng)

所以,原命題得證

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點滿足方程.

1)求點的軌跡的方程;

2)作曲線關(guān)于軸對稱的曲線,記為,在曲線上任取一點,過點作曲線的切線,若切線與曲線交于,兩點,過點,分別作曲線的切線,,證明:,的交點必在曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年,全國各地區(qū)堅持穩(wěn)中求進(jìn)工作總基調(diào),經(jīng)濟(jì)運行總體平穩(wěn),發(fā)展水平邁上新臺階,發(fā)展質(zhì)量穩(wěn)步上升,人民生活福祉持續(xù)增進(jìn),全年最終消費支出對國內(nèi)生產(chǎn)總值增長的貢獻(xiàn)率為57.8%.下圖為2019年居民消費價格月度漲跌幅度:(同比(本期數(shù)-去年同期數(shù))/去年同期數(shù),環(huán)比(本期數(shù)-上期數(shù))/上期數(shù)

下列結(jié)論中不正確的是(

A.2019年第三季度的居民消費價格一直都在增長

B.20187月份的居民消費價格比同年8月份要低一些

C.2019年全年居民消費價格比2018年漲了2.5%以上

D.20193月份的居民消費價格全年最低

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若函數(shù)有兩個不同的極值點、,求證:;

3)設(shè),函數(shù)的反函數(shù)為,令,、,,,若時,對任意的,恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中心在原點的橢圓E的一個焦點與拋物線的焦點關(guān)于直線對稱,且橢圓E與坐標(biāo)軸的一個交點坐標(biāo)為.

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)過點的直線l(直線的斜率k存在且不為0)交EAB兩點,交x軸于點PA關(guān)于x軸的對稱點為D,直線BDx軸于點Q.試探究是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,與等邊所在的平面相互垂直,,為線段中點,直線與平面交于點..

1)求證:平面平面;

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某籃球隊甲、乙兩名運動員練習(xí)罰球,每人練習(xí)10組,每組罰球40個.命中個數(shù)的莖葉圖如圖,則下面結(jié)論中錯誤的一個是(  )

A. 甲的極差是29 B. 甲的中位數(shù)是24

C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠共有50位工人組裝某種零件.下面的散點圖反映了工人們組裝每個零件所用的工時(單位:分鐘)與人數(shù)的分布情況.由散點圖可得,這50位工人組裝每個零件所用工時的中位數(shù)為___________.若將500個要組裝的零件分給每個工人,讓他們同時開始組裝,則至少要過_________分鐘后,所有工人都完成組裝任務(wù).(本題第一空2分,第二空3分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年全國兩會,即中華人民共和國第十三屆全國人大二次會議和中國人民政治協(xié)商會議第十三屆全國會第二次會議,分別于201935日和33日在北京召開.為了了解哪些人更關(guān)注兩會,某機(jī)構(gòu)隨機(jī)抽取了年齡在歲之間的200人進(jìn)行調(diào)查,并按年齡繪制出頻率分布直方圖,如圖.

若把年齡在區(qū)間內(nèi)的人分別稱為青少年”“中老年.經(jīng)統(tǒng)計青少年中老年的人數(shù)之比為.其中青少年中有40人關(guān)注兩會中老年中關(guān)注兩會和不關(guān)注兩會的人數(shù)之比為

1)求圖中的值.

2)現(xiàn)采用分層抽樣在中隨機(jī)抽取8人作為代表,從8人中任選2人,求2人都是中老年的概率.

3)根據(jù)已知條件,完成下面的列聯(lián)表,并判斷能否有%的把握認(rèn)為中老年青少年更加關(guān)注兩會

關(guān)注

不關(guān)注

總計

青少年

中老年

總計

附:,其中

查看答案和解析>>

同步練習(xí)冊答案