已知數(shù)列{an}中,a1=1,a2=0,其前n項(xiàng)和Sn滿足:Sn+Sn-2=2Sn-1+2n-1-3(n≥3)
(1)試求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn
考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件推導(dǎo)出an-an-1=2n-1-3(n≥3),由此利用累加法能求出an=2n-3n+2(n∈N*)
(2)用分組求和的方法可得Sn=2n+1-2-
n(3n-1)
2
解答: 解:(1)∵Sn+Sn-2=2Sn-1+2n-1-3(n≥3),
(Sn-Sn-1)-(Sn-1-Sn-2)=2n-1-3,
an-an-1=2n-1-3(n≥3),
a3-a2=22-3,
a4-a3=23-3,
…,
an-an-1=2n-1-3
這n-2個(gè)式子相加,得:
an-a2=22+23+…+2n-1-3(n-2),又a2=0
所以an=2n-3n+2(n≥3)
經(jīng)驗(yàn)證a1和a2也滿足該式,
an=2n-3n+2(n∈N*)
(2)∵an=2n-3n+2(n∈N*),
∴Sn=2×
1-2n
1-2
-3×
n(n+1)
2
+2n
∴用分組求和的方法得Sn=2n+1-2-
n(3n-1)
2
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意累加法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=f(x)的導(dǎo)函數(shù)的圖象與直線y=2x平行,且y=f(x)在x=-1處取得最小值為0.
(1)求y=f(x)的解析式;
(2)若函數(shù)y=f(x)-kx在區(qū)間(0,2)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax-ex(a>0).
(Ⅰ)若a=1,求函數(shù)f(x)在[m,m+l]上的最大值;
(Ⅱ)當(dāng)1≤a≤e+1時(shí),求證:f(x)≤x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,平面A1BC⊥側(cè)面A1ABB1,且AA1=AB=2.
(1)求證:AB⊥BC;
(2)若直線AC與平面A1BC所成的角為
π
6
,求銳二面角A-A1C-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
3
2
cosx+
1
2
sinx+1
(1)求函數(shù)f(x)的值域和函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)f(a)=
9
5
,且
π
6
<α<
3
時(shí),求sin(2α+
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

戶外運(yùn)動(dòng)已經(jīng)成為一種時(shí)尚運(yùn)動(dòng),某單位為了了解員工喜歡戶外運(yùn)動(dòng)是否與性別有關(guān),對(duì)本單位的50名員工進(jìn)行了問(wèn)卷調(diào)查,得到了如下列聯(lián)表:
喜歡戶外運(yùn)動(dòng)不喜歡戶外運(yùn)動(dòng)合計(jì)
男性20525
女性101525
合計(jì)302050
(1)是否有99.5%的把握認(rèn)為喜歡戶外運(yùn)動(dòng)與性別有關(guān)?并說(shuō)明你的理由;
(2)經(jīng)進(jìn)一步調(diào)查發(fā)現(xiàn),在喜歡戶外運(yùn)動(dòng)的10名女性員工中,有6人還喜歡瑜伽.若從喜歡戶外運(yùn)動(dòng)的10位女性員工中任選2人,求至少有一人喜歡瑜伽的概率
下面的臨界值表僅供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,2),
b
=(-3,4).
(Ⅰ)求
a
+
b
a
-
b
的夾角;
(Ⅱ)若
a
⊥(
a
b
),求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程-sin2x+sinx+a=0有實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

類比平面內(nèi)“垂直于同一條直線的兩條直線互相平行”的性質(zhì),可推出空間下列結(jié)論:
①垂直于同一條直線的兩條直線互相平行;
②垂直于同一個(gè)平面的兩條直線互相平行;
③垂直于同一條直線的兩個(gè)平面互相平行;
④垂直于同一個(gè)平面的兩個(gè)平面互相平行.
則正確結(jié)論的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案