函數(shù)f(x)=
x+c(x≥0)
x-1(x<0)
是增函數(shù),則實(shí)數(shù)c的取值范圍是( 。
A、[-1,+∞)
B、(-1,+∞)
C、(-∞,-1)
D、(-∞,-1]
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由于當(dāng)x≥0時(shí),當(dāng)x<0時(shí)函數(shù)遞增,則由單調(diào)性可知,只需0+c≥0-1,解得即可.
解答: 解:當(dāng)x≥0時(shí),y=x+c遞增;
當(dāng)x<0時(shí),y=x-1遞增;
由于函數(shù)f(x)在R上遞增,
則0+c≥0-1,
即有c≥-1.
故選A.
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性的運(yùn)用,考查分段函數(shù)的單調(diào)性,注意各段的情況和分界點(diǎn),屬于基礎(chǔ)題和易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
y2
25
+
x2
16
=1,經(jīng)過焦點(diǎn)F1做一直線交橢圓于A、B兩點(diǎn),求l的斜率k=-1時(shí),求弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(xA,yA),B(xB,yB)為平面直角坐標(biāo)系的兩點(diǎn),其中xA,yA,xB,yB∈Z,令△x=xB-xA,△y=yB-yA,若|△x|+|△y|=3,且△x•△y≠0,則稱點(diǎn)B為A的“相關(guān)點(diǎn)”,記作:B=△τ(A),已知P0(x0,y0)(x0,y0∈Z)為平面上一個(gè)定點(diǎn),平面上點(diǎn)列{Pi}滿足:Pi=τ(Pi-1),且點(diǎn)Pi的坐標(biāo)為(xi,yi),其中i=1,2,3,…,n.
(1)點(diǎn)P0的“相關(guān)點(diǎn)有
 
個(gè);
(2)若P0(1,0),且y10=12,記T=x0+x1+x2+…+x10,則T的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:關(guān)于x的方程3x2+2mx+m+
4
3
=0有兩個(gè)不等實(shí)數(shù)根,命題q:方程
x2
m-1
+
y2
5-m
=1表示雙曲線,若“p或q”為真命題,“p且q”為假命題,則實(shí)數(shù)m的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等差數(shù)列{an}的公差為2,且a1,a2,a4成等比數(shù)列,則a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin4x-cos4x,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)區(qū)間;
(2)求f(x)的最大值以及取最大值時(shí)相應(yīng)的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的程序框圖運(yùn)行的結(jié)果是(  )
A、
2012
2013
B、
2013
2014
C、
2014
2013
D、
2015
2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
=(1,-1,2),
b
=(2,-1,2),則
a
b
的夾角的余弦值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=2sinθ-
3
i,z2=1+(2cosθ)i,θ∈[0,π].
(1)若z1•z2∈R,求角θ;
(2)復(fù)數(shù)z1,z2對(duì)應(yīng)的向量分別是
OZ1
,
OZ2
,其中O為坐標(biāo)原點(diǎn),求
OZ1
OZ2
的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案