如圖,正三棱柱所有棱長都是2,D棱AC的中點,E是棱的中點,AE交于點H.
(1)求證:平面;
(2)求二面角的余弦值;
(3)求點到平面的距離.
(1)參考解析;(2) ;(3)
解析試題分析:(1)由正三棱柱,可得平面ACB⊥平面.又DB⊥AC.所以如圖建立空間直角坐標(biāo)系.分別點A,E,B,D, 的坐標(biāo),得出相應(yīng)的向量.即可得到向量AE與向量BD,向量的數(shù)量積為零.即可得直線平面.
(2)由平面,平面分別求出這兩個平面的法向量,根據(jù)法向量的夾角得到二面角的余弦值(根據(jù)圖形取銳角).
(3)點到平面的距離,轉(zhuǎn)化為直線與法向量的關(guān)系,再通過解三角形的知識即可得點到平面的距離.本小題關(guān)鍵是應(yīng)用解三角形的知識.
試題解析:(1)證明:建立如圖所示,
∵
∴ 即AE⊥A1D, AE⊥BD
∴AE⊥面A1BD
(2)由 ∴取
設(shè)面AA1B的法向量為 ,
由圖可知二面角D—BA1—A的余弦值為
(3),平面A1BD的法向量取
則B1到平面A1BD的距離d=
考點:1.空間坐標(biāo)系的建立.2.線面垂直的證明.4.二面角的求法.5.點到平面的距離公式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在邊長為的正方形中,點在線段上,且,,作//,分別交,于點,,作//,分別交,于點,,將該正方形沿,折疊,使得與重合,構(gòu)成如圖所示的三棱柱.
(1)求證:平面;
(2)若點E為四邊形BCQP內(nèi)一動點,且二面角E-AP-Q的余弦值為,求|BE|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐的底面的菱形,,點是邊的中點,交于點,
(1)求證:;
(2)若的大小;
(3)在(2)的條件下,求異面直線與所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知在四棱錐中,底面是矩形,平面,,,是的中點,是線段上的點.
(1)當(dāng)是的中點時,求證:平面;
(2)要使二面角的大小為,試確定點的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,在Rt中,, D、E分別是上的點,且,將沿折起到的位置,使,如圖2.
(1)求證:平面平面;
(2)若,求與平面所成角的余弦值;
(3)當(dāng)點在何處時,的長度最小,并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖, 已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)求證:AG平面BDE;
(2)求:二面角GDEB的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在多面體ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,BA⊥AC,ED⊥DG,EF∥DG,且AC=1,AB=ED=EF=2,AD=DG=4.
(1)求證:BE⊥平面DEFG;
(2)求證:BF∥平面ACGD;
(3)求二面角F-BC-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在三棱錐SABC中,底面是邊長為2的正三角形,點S在底面ABC上的射影O恰是AC的中點,側(cè)棱SB和底面成45°角.
(1)若D為側(cè)棱SB上一點,當(dāng)為何值時,CD⊥AB;
(2)求二面角S-BC-A的余弦值大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com