分析 根據(jù)半角公式可證明已知的三個等式,再由題意,觀察各式可得其規(guī)律,用n將規(guī)律表示出來一般性結(jié)論.
解答 證明:∵cos$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$,∴2cos$\frac{π}{4}$=$\sqrt{2}$;
2cos$\frac{π}{8}$=2$\sqrt{\frac{1+\frac{\sqrt{2}}{2}}{2}}$=$\sqrt{2+\sqrt{2}}$
2cos$\frac{π}{16}$=2$\sqrt{\frac{1+\frac{\sqrt{2+\sqrt{2}}}{2}}{2}}$=$\sqrt{2+\sqrt{2+\sqrt{2}}}$,觀察下列等式:
2cos$\frac{π}{4}$=$\sqrt{2}$;
2cos$\frac{π}{8}$=$\sqrt{2+\sqrt{2}}$;
2cos$\frac{π}{16}$=$\sqrt{2+\sqrt{2+\sqrt{2}}}$;
…
由上邊的式子,我們可以推斷:
2cos$\frac{π}{{2}^{n+1}}$=$\begin{array}{c}\\ \stackrel{n層}{\sqrt{2+\sqrt{2+…+\sqrt{2}}}}\end{array}\right.$(n∈N*)
點評 歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達(dá)的一般性命題(猜想).
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3n | B. | 2n | C. | 3n-1 | D. | 2n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,3,9} | B. | {1,9} | C. | {3} | D. | {3,9} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A∩B=∅ | B. | A∪B=B | C. | A∩B=A | D. | B?A |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 沒有一個內(nèi)角是鈍角 | B. | 只有兩個內(nèi)角是鈍角 | ||
C. | 至少有兩個內(nèi)角是鈍角 | D. | 三個內(nèi)角都是鈍角 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com