A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | 0 |
分析 由A與B的度數之比,得到B=2A,且B大于A,可得出AC大于BC,利用角平分線定理根據角平分線CD將三角形分成的面積之比為3:2,得到BC與AC之比,再利用正弦定理得出sinA與sinB之比,將B=2A代入并利用二倍角的正弦函數公式化簡,即可求出cosA的值.
解答 解:∵A:B=1:2,即B=2A,
∴B>A,
∴AC>BC,
∵角平分線CD把三角形面積分成3:2兩部分,
∴由角平分線定理得:BC:AC=BD:AD=2:3,
∴由正弦定理$\frac{BC}{sinA}=\frac{AC}{sinB}$得:$\frac{sinA}{sinB}=\frac{2}{3}$,
整理得:$\frac{sinA}{sin2A}=\frac{sinA}{2sinAcosA}$=$\frac{2}{3}$,
則cosA=$\frac{3}{4}$.
故選:C.
點評 此題屬于解三角形的題型,涉及的知識有:正弦定理,角平分線定理,以及二倍角的正弦函數公式,熟練掌握定理及公式是解本題的關鍵.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 命題“?x∈R,均有x2-3x-2≥0”的否定是:“?x0∈R,使x02-3x0-2≤0” | |
B. | “x=-1”是“x2-5x-6=0”的必要不充分條件 | |
C. | 命題“若x<y,則x2<y2”的逆否命題是真命題 | |
D. | 若命題p∧q為真則命題p∨q一定為真 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com