20.已知集合A={y|y=2x+1},B={x|x2+x>0},A∩B=( 。
A.{x|x>0}B.{x|-1<x<1}C.{x|x>1}D.{x|x>0或x<-1}

分析 求出A中y的范圍確定出A,求出B中x的范圍確定出B,找出A與B的交集即可.

解答 解:由A中y=2x+1>1,得到A={y|y>1},
由B中不等式變形得:x(x+1)>0,
解得:x<-1或x>0,即B={x|x<-1或x>0},
則A∩B={x|x>1},
故選:C.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\sqrt{3}cos(\frac{π}{2}-x)+2{cos^2}\frac{x}{2}$.
(Ⅰ)求$f(\frac{π}{3})$的值和f(x)的最小正周期;
(Ⅱ)求f(x)在[0,π]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=msinx+2ncos2$\frac{x}{2}$-n在x=$\frac{π}{4}$時(shí)取得最小值$\frac{\sqrt{2}}{2}$(m+n)(m≠0),將函數(shù)f(x)圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的$\frac{1}{ω}$倍(ω>O,縱坐標(biāo)不變)得到函數(shù)g(x)的圖象,若g(x)在區(qū)間($\frac{π}{2}$,π)內(nèi)單調(diào)遞減,則ω的取值范圍為[$\frac{1}{2}$,$\frac{1}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足$\frac{sin(2A+B)}{sinA}$=2+2cos(A+B).
(Ⅰ)求$\frac{a}$的值;
(Ⅱ)若a=1,c=$\sqrt{7}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x-2≤0\\ x+y-3≥0\end{array}$,則z=$\frac{2^x}{4^y}$的取值范圍是[$\frac{1}{16}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,C=$\frac{2π}{3}$,且a2-(b-c)2=(2-$\sqrt{3}$)bc.
(Ⅰ)求角B的大;
(Ⅱ)若等差數(shù)列{an}的公差不為零,且a1•cos2B=1,且a2,a4,a8成等比數(shù)列,求{${\frac{4}{{{a_n}{a_{n+1}}}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.不等式組$\left\{\begin{array}{l}{y≤x+1}\\{y≥x}\\{0≤y≤a}\\{x≥0}\end{array}\right.$表示的平面區(qū)域的面積為2,則實(shí)數(shù)a的值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知直線l:xsinα-ycosα=1,其中α為常數(shù)且α∈[0,2π],則錯(cuò)誤的結(jié)論是( 。
A.直線l的傾斜角為α
B.無(wú)論α為何值,直線l總與一定圓相切
C.若直線l與兩坐標(biāo)軸都相交,則與兩坐標(biāo)軸圍成的三角形的面積不小于1
D.若P(x,y)是直線l上的任意一點(diǎn),則x2+y2≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)函數(shù)f(x)=sinxcosx-sin2(x-$\frac{π}{4}$).
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x-$\frac{π}{6}$)在[0,$\frac{π}{2}$]上的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案