分析 利用兩角和的正弦函數(shù)公式化簡(jiǎn)可得解析式f(x)=$\sqrt{{m}^{2}+{n}^{2}}$sin(x+φ),由題意f($\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$(m+n)=-$\sqrt{{m}^{2}+{n}^{2}}$<0,可得m=n<0,利用函數(shù)y=Asin(ωx+φ)的圖象變換可求g(x),根據(jù)已知及正弦函數(shù)的單調(diào)性可得$\frac{2π}{ω}$≥2×$\frac{π}{2}$,解得ω≤2,又由2kπ+$\frac{π}{2}$≤ωx+$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$(k∈Z),可得$\left\{\begin{array}{l}{\stackrel{0<ω≤2}{\frac{π}{4ω}+\frac{2kπ}{ω}≤\frac{π}{2}}}\\{\frac{5π}{4ω}+\frac{2kπ}{ω}≥π}\end{array}\right.$,進(jìn)而解得ω的取值范圍.
解答 解:∵f(x)=msinx+2ncos2$\frac{x}{2}$-n=$\sqrt{{m}^{2}+{n}^{2}}$sin(x+φ),
∴f($\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$(m+n)=-$\sqrt{{m}^{2}+{n}^{2}}$<0,平方可得:m=n<0,
∴f(x)=-$\sqrt{{m}^{2}+{n}^{2}}$sin(x+$\frac{π}{4}$),
∴將函數(shù)f(x)圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的$\frac{1}{ω}$倍(ω>O,縱坐標(biāo)不變)得到函數(shù)g(x)的圖象,可得:g(x)=-$\sqrt{{m}^{2}+{n}^{2}}$sin(ωx+$\frac{π}{4}$),
∵g(x)在區(qū)間($\frac{π}{2}$,π)內(nèi)單調(diào)遞減,
∴y=sin(ωx+$\frac{π}{4}$)在區(qū)間($\frac{π}{2}$,π)內(nèi)單調(diào)遞減,$\frac{2π}{ω}$≥2×$\frac{π}{2}$,解得:ω≤2,
∴2kπ+$\frac{π}{2}$≤ωx+$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$(k∈Z),解得:$\frac{π}{4ω}$+$\frac{2kπ}{ω}$≤x≤$\frac{5π}{4ω}$+$\frac{2kπ}{ω}$,
∴則有$\left\{\begin{array}{l}{\stackrel{0<ω≤2}{\frac{π}{4ω}+\frac{2kπ}{ω}≤\frac{π}{2}}}\\{\frac{5π}{4ω}+\frac{2kπ}{ω}≥π}\end{array}\right.$,解得:$\left\{\begin{array}{l}{0<ω≤2}\\{4k+\frac{1}{2}≤ω≤\frac{5}{4}+2k,k∈Z}\end{array}\right.$,
∴$\frac{1}{2}≤$ω≤$\frac{1}{4}$.
故答案為:[$\frac{1}{2}$,$\frac{1}{4}$].
點(diǎn)評(píng) 本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象和性質(zhì),兩角和的正弦函數(shù)公式的應(yīng)用,考查了計(jì)算能力和數(shù)形結(jié)合思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{10}$ | B. | $\sqrt{13}$ | C. | 3$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|x>0} | B. | {x|-1<x<1} | C. | {x|x>1} | D. | {x|x>0或x<-1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com