4.已知z1=x2++2i,z2=-3+4i(x∈R),則|z1+z2|的最小值是6.

分析 求出z1+z2,再利用模長(zhǎng)定義求出|z1+z2|以及它的最小值.

解答 解:∵z1=x2+2i,z2=-3+4i(x∈R),
∴z1+z2=(x2-3)+6i,
∴|z1+z2|=$\sqrt{{{(x}^{2}-3)}^{2}{+6}^{2}}$≥6,
當(dāng)且僅當(dāng)x=±$\sqrt{3}$時(shí),|z1+z2|取得最小值6.
故答案為:6.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算與求模的問(wèn)題,也考查了函數(shù)的最值問(wèn)題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.?dāng)?shù)列{an},{bn}滿足 $\left\{\begin{array}{l}{{a}_{n+1}=\frac{1}{2}{a}_{n}+\frac{1}{2}_{n}}\\{\frac{1}{_{n+1}}=\frac{1}{2}•\frac{1}{{a}_{n}}+\frac{1}{2}•\frac{1}{_{n}}}\end{array}\right.$,a1>0,b1>0;
(1)求證:{an•bn}是常數(shù)列;
(2)若{an}是遞減數(shù)列,求a1與b1的關(guān)系;
(3)設(shè)a1=4,b1=1,cn=log3$\frac{{a}_{n}+2}{{a}_{n}-2}$,求{cn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知等差數(shù)列{an},{bn}的前n項(xiàng)和分別是Sn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{3n-3}{2n+3}$,則$\frac{{a}_{6}}{_{6}}$等于( 。
A.$\frac{3}{2}$B.1C.$\frac{6}{5}$D.$\frac{27}{23}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知數(shù)列{an},{bn}滿足:a1=-1,b1=2,an+1=-bn,bn+1=2an-3bn(n∈N*).則b2015+b2016=-22015

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若點(diǎn)P(x,y)為集合M={(x,y)|$\left\{\begin{array}{l}{x-4y+3≤0}\\{3x+5y≤25}\\{x-1≥0}\end{array}\right.$}內(nèi)的一個(gè)元素時(shí),則$\frac{x+5y}{x}$的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知x,y都是正實(shí)數(shù),且x+y=1,若不等式x2-mxy+4y≥0對(duì)滿足以上條件的任意x,y恒成立,則實(shí)數(shù)m的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知sinx=-1,則角x等于( 。
A.$\frac{3π}{2}$B.kπ(k∈Z)C.2kπ-$\frac{π}{2}$(k∈Z)D.2(k+1)π+$\frac{3π}{2}$(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.平面直角坐標(biāo)系xOy中,雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F(2,0),以F為圓心,F(xiàn)O為半徑的圓與雙曲線的兩條漸近線分別交于A,B(不同于O),當(dāng)|AB|取最大值時(shí)雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=lnx,g(x)=ex,其中e是白然對(duì)數(shù)的底數(shù),e=2.71828…
(I)若函數(shù)φ(x)=f(x)-$\frac{x+1}{x-1}$求函數(shù)φ(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)直線l為函數(shù)f(x)的圖象上一點(diǎn)A(x0,f(x0)處的切線,證明:在區(qū)間(1,+∞)上存在唯一的x0,使得直線l與曲線y=g(x)相切.

查看答案和解析>>

同步練習(xí)冊(cè)答案