12.已知數(shù)列{an},{bn}滿足:a1=-1,b1=2,an+1=-bn,bn+1=2an-3bn(n∈N*).則b2015+b2016=-22015

分析 an+1=-bn,bn+1=2an-3bn,可得:bn+2=2an+1-3bn+1=-2bn-3bn+1,化為:bn+2+bn+1=-2(bn+1+bn),再利用等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:∵an+1=-bn,bn+1=2an-3bn,
∴bn+2=2an+1-3bn+1=-2bn-3bn+1,
化為:bn+2+bn+1=-2(bn+1+bn),
∴數(shù)列{bn+1+bn}是等比數(shù)列,首項(xiàng)為1,公比為-2.
∴bn+1+bn=(-2)n
∴b2015+b2016=(-2)2015=-22015
故答案為:-22015

點(diǎn)評(píng) 本題考查了遞推公式的應(yīng)用、等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若數(shù)列{an}前n項(xiàng)和為Sn,a1=a2=2,且滿足Sn+Sn+1+Sn+2=3n2+6n+5,則S47等于2209.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,若{an}和{$\sqrt{{S}_{n}}$}都是等差數(shù)列,且公差相等,則a6=( 。
A.$\frac{11}{4}$B.$\frac{3}{2}$C.$\frac{7}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.給出下面四個(gè)推導(dǎo)過程,正確的有(1)(4).
(1)∵a,b∈R+,∴$\frac{a}$+$\frac{a}$≥2$\sqrt{\frac{a}•\frac{a}}$=2;
(2)∵x,y∈R+,∴l(xiāng)gx+lgy≥2$\sqrt{lgx•lgy}$;
(3)∵a∈R,a≠0,∴$\frac{1}{a}$+a≥2$\sqrt{\frac{1}{a}•a}$=2;
(4)∵x,y∈R,xy<0,∴$\frac{x}{y}$+$\frac{y}{x}$=-[(-$\frac{x}{y}$)+(-$\frac{y}{x}$)]≤-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=$\frac{π}{2}$-$\frac{sinx}{3+|x|}$的最大值是M,最小值是m,則f(M+m)的值等于( 。
A.0B.C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)f(x)是一次函數(shù),f(1)=1,且f(2),f(3)+1,f(5)成等差數(shù)列,若an=f(n),n∈N*
(1)求證:{an}是等差數(shù)列;
(2)在{an}每相鄰的兩項(xiàng)之間插入2個(gè)數(shù),構(gòu)成一個(gè)新的等差數(shù)列{bn},求數(shù)列{bn}的前n項(xiàng)和Bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知z1=x2++2i,z2=-3+4i(x∈R),則|z1+z2|的最小值是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.己知sinα=2cosα,求sinα,cosα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.(x+$\frac{a}{x}$)(2x-$\frac{1}{x}$)5的展開式中各項(xiàng)系數(shù)的和為2,則該展開式中含x2項(xiàng)為( 。
A.0B.-80x2C.80x2D.160x2

查看答案和解析>>

同步練習(xí)冊(cè)答案