分析 求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,可得ab=2,再由基本不等式計(jì)算即可得到所求最小值.
解答 解:函數(shù)f(x)=x(x-a)(x-b)+sinx的導(dǎo)函數(shù)為:
f′(x)=3x2-2(a+b)x+ab+cosx,
y=f(x)在x=0處的導(dǎo)數(shù)為ab+cos0=ab+1,
由題意可得ab+1=3,即ab=2,
則a2+2b2≥2$\sqrt{2{a}^{2}^{2}}$=4$\sqrt{2}$,
當(dāng)且僅當(dāng)a=$\sqrt{2}$b時取得最小值4$\sqrt{2}$.
故答案為:4$\sqrt{2}$.
點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查最值的求法,注意運(yùn)用基本不等式,以及滿足的條件:一正二定三等,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
高一 | 莖 | 高二 | ||||||||||
4 | ||||||||||||
3 | 5 | |||||||||||
6 | 4 | 2 | 6 | |||||||||
6 | 8 | 8 | 6 | 4 | 3 | 7 | ||||||
9 | 2 | 8 | 6 | 5 | 1 | 8 | ||||||
7 | 5 | 5 | 2 | 9 |
滿意度評分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級 | 不滿意 | 滿意 | 非常滿意 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 13 | C. | 14 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x2 | B. | y=x3 | C. | y=x-1 | D. | y=$\sqrt{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com